Statistical convergence of multiple sequences

被引:156
作者
Móricz, F [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
D O I
10.1007/s00013-003-0506-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the concept of and basic results on statistical convergence from ordinary (single) sequences to multiple sequences of (real or complex) numbers. As an application to Fourier analysis, we obtain the following Theorem 3: (i) If f is an element of L (log(+) L)(d-1) (T-d), where T-d := [-pi, pi)(d) is the d-dimensional torus, then the Fourier series of f is statistically convergent to f (t) at almost every t is an element of T-d; (ii) If f is an element of C(T-d), then the Fourier series of f is statistically convergent to f (t) uniformly on T-d.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 10 条
  • [1] Connor J. S., 1988, ANALYSIS, V8, P47
  • [2] Fast H., 1951, Colloq. Math, V2, P241, DOI [10.4064/cm-2-3-4-241-244, DOI 10.4064/CM-2-3-4-241-244]
  • [3] Fridy JA., 1985, Analysis, V5, P301, DOI DOI 10.1524/ANLY.1985.5.4.301
  • [4] Gogoladze L. D., 1977, IZV AKAD NAUK SSSR M, V41, P937
  • [5] UBER DIE APPROXIMATION IM STARKEN SINNE
    LEINDLER, L
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1965, 16 (1-2): : 255 - &
  • [6] LEINDLER L, 1985, STRONG APPROXIMATION
  • [7] STRONG UNIFORM APPROXIMATION BY DOUBLE FOURIER-SERIES
    MORICZ, F
    SHI, XL
    [J]. JOURNAL OF APPROXIMATION THEORY, 1990, 61 (01) : 23 - 39
  • [8] Niven I. M., 1972, INTRO THEORY NUMBERS
  • [9] Schoenberg I. J., 1959, AM MATH MONTHLY, V66, P361, DOI DOI 10.1080/00029890.1959.11989303
  • [10] ZYGMUND A, 1959, TRIGONOMETRIC SERIES, V2