Uniform Holder-norm bounds for finite element approximations of second-order elliptic equations

被引:2
作者
Diening, Lars [1 ]
Scharle, Toni [2 ]
Suli, Endre [2 ]
机构
[1] Univ Bielefeld, Fac Math, Univ Str 25, D-33615 Bielefeld, Germany
[2] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
elliptic differential equations; finite element methods; discrete C-alpha regularity; CONVERGENCE; REGULARITY;
D O I
10.1093/imanum/drab029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a discrete counterpart of the De Giorgi-Nash-Moser theory, which provides uniform Holder-norm bounds on continuous piecewise affine finite element approximations of second-order linear elliptic problems of the form -del center dot (A del u) = f - del center dot F with A epsilon L-infinity (Omega; R-nxn) a uniformly elliptic matrix-valued function, f epsilon L-q(Omega), F epsilon L-p(Omega; R-n), with p > n and q > n/2, on A-nonobtuse shape-regular triangulations, which are not required to be quasi-uniform, of a bounded polyhedral Lipschitz domain Omega subset of R-n.
引用
收藏
页码:1846 / 1898
页数:53
相关论文
共 31 条
[1]  
Aguilera N. E., 1986, Calcolo, V23, P327, DOI 10.1007/BF02576116
[2]  
[Anonymous], 1976, Numerical Solution of Partial Differential Equations-III
[3]   FINITE-ELEMENT ERROR ANALYSIS OF A QUASI-NEWTONIAN FLOW OBEYING THE CARREAU OR POWER-LAW [J].
BARRETT, JW ;
LIU, WB .
NUMERISCHE MATHEMATIK, 1993, 64 (04) :433-453
[4]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[5]   QUASI-NORM ERROR-BOUNDS FOR THE FINITE-ELEMENT APPROXIMATION OF A NON-NEWTONIAN FLOW [J].
BARRETT, JW ;
LIU, WB .
NUMERISCHE MATHEMATIK, 1994, 68 (04) :437-456
[6]  
Beck L, 2016, LECT NOTES UNIONE MA, V19, P1, DOI 10.1007/978-3-319-27485-0
[7]   ASYMPTOTIC ERROR EXPANSION AND RICHARDSON EXTRAPOLATION FOR LINEAR FINITE-ELEMENTS [J].
BLUM, H ;
LIN, Q ;
RANNACHER, R .
NUMERISCHE MATHEMATIK, 1986, 49 (01) :11-37
[8]  
Brenner S., 2008, MATH THEORY FINITE E
[9]   THE DE GIORGI METHOD FOR REGULARITY OF SOLUTIONS OF ELLIPTIC EQUATIONS AND ITS APPLICATIONS TO FLUID DYNAMICS [J].
Caffarelli, Luis A. ;
Vasseur, Alexis F. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03) :409-427
[10]   Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1 [J].
Casado-Diaz, J. ;
Rebollo, T. Chacon ;
Girault, V. ;
Marmol, M. Gomez ;
Murat, F. .
NUMERISCHE MATHEMATIK, 2007, 105 (03) :337-374