Asymptotic theory for curve-crossing analysis

被引:3
作者
Zhao, Zhibiao [1 ]
Wu, Wei Biao [1 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
central limit theorem; curve-crossing; linear processes; multiple Wiener-Ito integral; non-central limit theorem; nonlinear time series;
D O I
10.1016/j.spa.2006.10.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider asymptotic properties of curve-crossing counts of linear processes and nonlinear time series by curves. Central limit theorems are obtained for curve-crossing counts of short-range dependent PF processes. For the long-range dependence case, the asymptotic distributions are shown to be either multiple Wiener-lto integrals or integrals with respect to stable Levy processes, depending on the heaviness of tails of the underlying processes. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:862 / 877
页数:16
相关论文
共 46 条
[1]  
[Anonymous], COLLECTED WORKS COMM
[2]  
[Anonymous], 1982, Lithuanian Math. J.
[3]   THE EXPECTED MEASURE OF THE LEVEL SETS OF A REGULAR STATIONARY GAUSSIAN PROCESS [J].
BENZAQUEN, S ;
CABANA, EM .
PACIFIC JOURNAL OF MATHEMATICS, 1982, 103 (01) :9-16
[4]  
BULINSKAYA E. V., 1961, THEOR PROBAB APPL, V6, P435, DOI 10.1137/1106059
[5]   CENTRAL LIMIT-THEOREM FOR NUMBER OF ZEROS OF A STATIONARY GAUSSIAN PROCESS [J].
CUZICK, J .
ANNALS OF PROBABILITY, 1976, 4 (04) :547-556
[6]   New dependence coefficients. Examples and applications to statistics [J].
Dedecker, J ;
Prieur, C .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (02) :203-236
[7]  
DELAPENA V, 1999, USTATISTICS PROCESSE
[8]  
DENARANJO MVS, 1995, STAT PROBABIL LETT, V22, P223
[9]   Iterated random functions [J].
Diaconis, P ;
Freedman, D .
SIAM REVIEW, 1999, 41 (01) :45-76
[10]  
Duflo M., 1997, RANDOM ITERATIVE MOD