Porous layered lithium-rich oxide nanorods: Synthesis and performances as cathode of lithium ion battery

被引:45
作者
Chen, Dongrui
Yu, Qipeng
Xiang, Xingde
Chen, Min
Chen, Zhiting
Song, Shuai
Xiong, Lianwen
Liao, Youhao
Xing, Lidan
Li, Weishan
机构
[1] S China Normal Univ, Sch Chem & Environm, Key Lab Elect Technol Energy Storage, Guangzhou 510006, Guangdong, Peoples R China
[2] S China Normal Univ, Power Generat Guangdong Higher Educ Inst, Engn Res Ctr Mat & Technol Electrochem Energy Sto, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Layered lithium-rich oxide; Porous nanorods; Microemulsion method; Lithium ion battery; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; LI; COMPOSITE; CAPACITY; PARTICLES; OXALATE; CO; IMPROVEMENT; ELECTRODES;
D O I
10.1016/j.electacta.2014.12.037
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A layered lithium-rich oxide, Li[Li0.19Mn0.32Co0.49] O-2, is synthesized by introducing manganese and cobalt via oxalates co-crystallization in reverse micellar microemulsion. The physical and electrochemical performances of the as-synthesized oxide are evaluated as cathode of lithium ion battery. The physical characterizations, from X-ray diffraction, scanning electron microscope and transmission electron microscope, indicate that the as-synthesized oxide takes a nanorod morphology of up to 1 mu m in length and 200 nm in diameter, which is composed of about 20nm subunit nanoparticles, and possesses a hierarchical pore structure. Electrochemical measurements demonstrate that the as-synthesized oxide exhibits improved charge/discharge performances: less polarization, larger discharge capacity, higher rate capability, and better cyclic stability, compared to the sample synthesized by introducing the transition metals in solid-state reaction. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 55 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Improved electrochemical performance of LiNi0.5Mn1.5O4 as cathode of lithium ion battery by Co and Cr co-doping [J].
Chen, Dongrui ;
Li, Benzhen ;
Liao, Youhao ;
Lan, Hongwei ;
Lin, Haibin ;
Xing, Lidan ;
Wang, Yating ;
Li, Weishan .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (07) :2027-2033
[3]   Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V [J].
Chen, ZH ;
Dahn, JR .
ELECTROCHIMICA ACTA, 2004, 49 (07) :1079-1090
[4]   Synthesis and characterization of Li[Ni0.41Li0.08Mn0.51]O2 nanoplates for Li battery cathode material [J].
Cho, Jaephil ;
Kim, Yoojin ;
Kim, Min Gyu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (07) :3192-3196
[5]   Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes [J].
Deng, Z. Q. ;
Manthiram, A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (14) :7097-7103
[6]  
Fu F., 2003, J MATER CHEM, V1, P3860
[7]   Microemulsion-based synthesis of nanocrystalline materials [J].
Ganguli, Ashok K. ;
Ganguly, Aparna ;
Vaidya, Sonalika .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (02) :474-485
[8]   Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery [J].
Gao, Jian ;
Huang, Zhenlei ;
Li, Jianjun ;
He, Xiangming ;
Jiang, Changyin .
IONICS, 2014, 20 (03) :301-307
[9]   Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries [J].
Gu, Meng ;
Belharouak, Ilias ;
Zheng, Jianming ;
Wu, Huiming ;
Xiao, Jie ;
Genc, Arda ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
ACS NANO, 2013, 7 (01) :760-767
[10]   Hollow 0.3Li2MnO3•0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries [J].
Jiang, Yan ;
Yang, Ze ;
Luo, Wei ;
Hu, Xianluo ;
Huang, Yunhui .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (08) :2954-2960