General neural network approach to compressive feature extraction

被引:2
作者
Giljum, Anthony [1 ,2 ]
Liu, Weidi [1 ,2 ]
Li, Le [3 ]
Weber, Reed [4 ]
Kelly, Kevin F. [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, 6100 Main St, Houston, TX 77005 USA
[2] Rice Univ, Smalley Curl Inst, Appl Phys Grad Program, 6100 Main St, Houston, TX 77005 USA
[3] Kent Optron Inc, 40 Corp Pk Dr, Hopewell Jct, NY 12533 USA
[4] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA
关键词
D O I
10.1364/AO.427383
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Computer vision with a single-pixel camera is currently limited by a trade-off between reconstruction capability and image classification accuracy. If random projections are used to sample the scene, then reconstruction is possible but classification accuracy suffers, especially in cases with significant background signal. If data-driven projections are used, then classification accuracy improves and the effect of the background is diminished, but image recovery is not possible. Here, we employ a shallow neural network to nonlinearly convert from measurements acquired with random patterns to measurements acquired with data-driven patterns. The results demonstrate that this improves classification accuracy while still allowing for full reconstruction. (C) 2021 Optical Society of America
引用
收藏
页码:G217 / G223
页数:7
相关论文
共 22 条
[1]   A Simple Proof of the Restricted Isometry Property for Random Matrices [J].
Baraniuk, Richard ;
Davenport, Mark ;
DeVore, Ronald ;
Wakin, Michael .
CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) :253-263
[2]   Compressive sensing [J].
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (04) :118-+
[3]  
Chaladze G., 2017, Linnaeus 5 dataset for machine learning
[4]   The smashed filter for compressive classification and target recognition [J].
Davenport, Mark A. ;
Duarte, Marco F. ;
Wakin, Michael B. ;
Laska, Jason N. ;
Takhar, Dharmpal ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
COMPUTATIONAL IMAGING V, 2007, 6498
[5]  
Duarte M.F., 2006, PROC IEEE INT C ACOU, V3, P14
[6]   Single-pixel imaging via compressive sampling [J].
Duarte, Marco F. ;
Davenport, Mark A. ;
Takhar, Dharmpal ;
Laska, Jason N. ;
Sun, Ting ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :83-91
[7]  
Goldstein T., 2015, ADV NEURAL INFORM PR, V2, P2089
[8]   The STOne Transform: Multi-Resolution Image Enhancement and Compressive Video [J].
Goldstein, Tom ;
Xu, Lina ;
Kelly, Kevin F. ;
Baraniuk, Richard .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5581-5593
[9]   NuMax: A Convex Approach for Learning Near-Isometric Linear Embeddings [J].
Hegde, Chinmay ;
Sankaranarayanan, Aswin C. ;
Yin, Wotao ;
Baraniuk, Richard G. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (22) :6109-6121
[10]  
Hegde C, 2012, 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), P728, DOI 10.1109/SSP.2012.6319806