High-purity synthesis of all-inorganic CsPbBr3 perovskite powder assisted by solubilizing organic ligand and its application to perovskite solar cells

被引:4
作者
Tak, Hyeon Ju [1 ,2 ,3 ]
Lee, Ji Hyeon [1 ,2 ]
Yoo, Yongseok [3 ,4 ,5 ]
Park, Hee Jeong [3 ]
Cho, Woosum [3 ]
Lee, Sungkoo [3 ]
Jo, Jea Woong [1 ,2 ]
Bae, Seunghwan [3 ]
机构
[1] Dongguk Univ, Dept Energy & Mat Engn, 30 Pildong Ro,1 Gil, Seoul 04620, South Korea
[2] Dongguk Univ, Res Ctr Photoenergy Harvesting & Convers Technol, 30 Pildong Ro,1 Gil, Seoul 04620, South Korea
[3] Korea Inst Ind Technol KITECH, Green & Sustainable Mat R&D Dept, Cheonan 31056, Chungcheongnam, South Korea
[4] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul, South Korea
[5] Seoul Natl Univ, Inst Chem Proc ICP, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
all-inorganic perovskite solar cell; cost-effective; defect-reduced; ligand-assisted perovskite powder synthesis; stoichiometry; EFFICIENT; DEPOSITION;
D O I
10.1002/er.8193
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
All-inorganic perovskites have shown promising performances with high thermal stabilities when used as photoactive materials for optoelectronic applications. Therefore, the development of cost-effective, high-quality, and massive production methods of all-inorganic perovskites has emerged as an important task for the commercialization of perovskite-based optoelectronics. We developed a facile preparation method for all-inorganic CsPbBr3 perovskite powder by incorporating an organic ligand that enables Cs precursor to maintain high solubility during synthesis. The synthesized CsPbBr3 powder was verified for its cost-effectiveness and high purity due to an appropriate selection of thermally-decomposable precursors and effective removal of residue during the purification step. Furthermore, we found that the CsPbBr3 film prepared from our synthesized powder provided an improved homogeneity and a reduction of defects compared with that prepared from conventional metal halide precursor, which is attributed to the suppression of non-stoichiometry and impurity phase. Therefore, the perovskite solar cells fabricated using our CsPbBr3 powder offered improved power conversion efficiency (PCE) of 8.19% and stability than the control device from metal halide precursor (5.90%).
引用
收藏
页码:16019 / 16026
页数:8
相关论文
共 29 条
[1]   Direct deposition of Sn-doped CsPbBr3 perovskite for efficient solar cell application [J].
Abib, Mukerem Helil ;
Li, Junchun ;
Yang, Heming ;
Wang, Man ;
Chen, Taotao ;
EnzeXu ;
Jiang, Yang .
RSC ADVANCES, 2021, 11 (06) :3380-3389
[2]   Iodine reduction for reproducible and high-performance perovskite solar cells and modules [J].
Chen, Shangshang ;
Xiao, Xun ;
Gu, Hangyu ;
Huang, Jinsong .
SCIENCE ADVANCES, 2021, 7 (10)
[3]   Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell [J].
Dong, Chen ;
Han, Xiuxun ;
Li, Wenhui ;
Qiu, Qingqing ;
Wang, Jinqing .
NANO ENERGY, 2019, 59 :553-559
[4]   Effect of Side-Group-Regulated Dipolar Passivating Molecules on CsPbBr3 Perovskite Solar Cells [J].
Duan, Jialong ;
Wang, Meng ;
Wang, Yingli ;
Zhang, Junshuai ;
Guo, Qiyao ;
Zhang, Qiaoyu ;
Duan, Yanyan ;
Tang, Qunwei .
ACS ENERGY LETTERS, 2021, 6 (06) :2336-2342
[5]   Lanthanide Ions Doped CsPbBr3 Halides for HTM-Free 10.14%-Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open-Circuit Voltage of 1.594 V [J].
Duan, Jialong ;
Zhao, Yuanyuan ;
Yang, Xiya ;
Wang, Yudi ;
He, Benlin ;
Tang, Qunwei .
ADVANCED ENERGY MATERIALS, 2018, 8 (31)
[6]   Low-Temperature-Processed Perovskite Solar Cells Fabricated from Presynthesized CsFAPbI3 Powder [J].
Haris, Muhammed P. U. ;
Kazim, Samrana ;
Ahmad, Shahzada .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (03) :2600-2606
[7]   Ultrasound synthesis of lead halide perovskite nanocrystals [J].
Jang, Dong Myung ;
Kim, Duk Hwan ;
Park, Kidong ;
Park, Jeunghee ;
Lee, Jong Woon ;
Song, Jae Kyu .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (45) :10625-10629
[8]   Compositional engineering of perovskite materials for high-performance solar cells [J].
Jeon, Nam Joong ;
Noh, Jun Hong ;
Yang, Woon Seok ;
Kim, Young Chan ;
Ryu, Seungchan ;
Seo, Jangwon ;
Seok, Sang Il .
NATURE, 2015, 517 (7535) :476-+
[9]   Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells [J].
Jeong, Jaeki ;
Kim, Minjin ;
Seo, Jongdeuk ;
Lu, Haizhou ;
Ahlawat, Paramvir ;
Mishra, Aditya ;
Yang, Yingguo ;
Hope, Michael A. ;
Eickemeyer, Felix T. ;
Kim, Maengsuk ;
Yoon, Yung Jin ;
Choi, In Woo ;
Darwich, Barbara Primera ;
Choi, Seung Ju ;
Jo, Yimhyun ;
Lee, Jun Hee ;
Walker, Bright ;
Zakeeruddin, Shaik M. ;
Emsley, Lyndon ;
Rothlisberger, Ursula ;
Hagfeldt, Anders ;
Kim, Dong Suk ;
Graetzel, Michael ;
Kim, Jin Young .
NATURE, 2021, 592 (7854) :381-+
[10]   Highly crystalline MAPbI3 perovskite grain formation by irreversible poor-solvent diffusion aggregation, for efficient solar cell fabrication [J].
Johansson, Malin B. ;
Xie, Ling ;
Kim, Byeong Jo ;
Thyr, Jakob ;
Kandra, Timo ;
Johansson, Erik M. J. ;
Gothelid, Mats ;
Edvinsson, Tomas ;
Boschloo, Gerrit .
NANO ENERGY, 2020, 78