Differentiation of n-convex functions

被引:0
|
作者
Fejzic, H. [1 ]
Svetic, R. E.
Weil, C. E. [2 ]
机构
[1] Calif State Univ San Bernardino, Dept Math, San Bernardino, CA 92407 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
n-convex; Peano derivative;
D O I
10.4064/fm209-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this paper is that if f is n-convex on a measurable subset E of R, then f is n - 2 times differentiable, n - 2 times Peano differentiable and the corresponding derivatives are equal, and f((n-1)) = f((n-1)) except on a countable set. Moreover f((n-1)) is approximately differentiable with approximate derivative equal to the nth approximate Peano derivative of f almost everywhere.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 50 条
  • [1] Extending n-convex functions
    Pinkus, A
    Wulbert, D
    STUDIA MATHEMATICA, 2005, 171 (02) : 125 - 152
  • [2] INEQUALITIES FOR n-CONVEX FUNCTIONS
    Brnetic, Ilko
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (02): : 193 - 197
  • [3] AN INTEGRAL INEQUALITY FOR n-CONVEX FUNCTIONS
    Belbachir, Hacene
    Rahmani, Mourad
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (01): : 117 - 126
  • [4] Estimates of derivatives of n-convex functions
    Malyshev V.A.
    Journal of Mathematical Sciences, 1998, 92 (1) : 3622 - 3629
  • [5] Best φ-approximation by n-convex functions
    Marano, M
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1999, 20 (7-8) : 753 - 777
  • [6] SOME CLASSES OF N-CONVEX FUNCTIONS AND SETS
    KUTATELA.SS
    RUBINOV, AM
    DOKLADY AKADEMII NAUK SSSR, 1971, 197 (06): : 1261 - &
  • [7] BEST APPROXIMATION BY CONTINUOUS N-CONVEX FUNCTIONS
    BROWN, AL
    JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) : 69 - 76
  • [8] LINEAR OPERATORS INEQUALITY FOR n-CONVEX FUNCTIONS AT A POINT
    Pecaric, Josip
    Praljak, Marjan
    Witkowski, Alfred
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1201 - 1217
  • [9] MEANS INVOLVING LINEAR FUNCTIONALS AND n-CONVEX FUNCTIONS
    Jaksetic, J.
    Pecaric, J.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (03): : 657 - 675
  • [10] Inequalities of Ando's Type for n-convex Functions
    Mikic, Rozarija
    Pecaric, Josip
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2020, 17 (02): : 139 - 159