The mean curvature and volume growth of complete noncompact submanifolds

被引:14
作者
Cheung, LF
Leung, PF
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong
[2] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
关键词
volume growth; bounded mean curvature;
D O I
10.1016/S0926-2245(98)00010-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a complete noncompact submanifold with bounded mean curvature in the Euclidean or hyperbolic space has at least linear volume growth. We apply this to obtain some results on submanifolds of parallel mean curvature.
引用
收藏
页码:251 / 256
页数:6
相关论文
共 6 条
[1]  
BOMBIERI E, P 1980 BEIJ S DG D E
[2]  
BRYANT RL, 1987, ASTERISQUE, P321
[3]  
BUNKE U, 1991, ANN GLOB ANAL GEOM, V9, P319
[4]   SOBOLEV AND ISOPERIMETRIC INEQUALITIES FOR RIEMANNIAN SUBMANIFOLDS [J].
HOFFMAN, D ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (06) :715-727
[5]   SOBOLEV AND MEAN-VALUE INEQUALITIES ON GENERALIZED SUBMANIFOLDS OF RN [J].
MICHAEL, JH ;
SIMON, LM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1973, 26 (03) :361-379
[6]   COMPLETE-SURFACES OF CONSTANT MEAN CURVATURE-1 IN THE HYPERBOLIC 3-SPACE [J].
UMEHARA, M ;
YAMADA, K .
ANNALS OF MATHEMATICS, 1993, 137 (03) :611-638