A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients

被引:52
作者
Chen, S. [1 ]
Liu, F. [2 ]
Jiang, X. [1 ]
Turner, I. [2 ]
Anh, V. [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
基金
中国国家自然科学基金;
关键词
Anomalous diffusion; Variable coefficients; Stability and convergence; Bi-conjugate gradient stabilized method; Fast Fourier transform; Toeplitz matrix; NUMERICAL APPROXIMATION; ANOMALOUS DIFFUSION; CONVERGENCE; STABILITY;
D O I
10.1016/j.amc.2014.08.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick's law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n(2)) and computational cost of O(n(3)) down to n and O(n log n), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:591 / 601
页数:11
相关论文
共 33 条
  • [11] Space-time scaling behavior of rain statistics in a stochastic fractional diffusion model
    Kundu, Prasun K.
    Bell, Thomas L.
    [J]. JOURNAL OF HYDROLOGY, 2006, 322 (1-4) : 49 - 58
  • [12] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [13] Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
    Liu, F.
    Zhuang, P.
    Anh, V.
    Turner, I.
    Burrage, K.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) : 12 - 20
  • [14] Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term
    Liu, Fawang
    Chen, Shiping
    Turner, Ian
    Burrage, Kevin
    Vo Anh
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1221 - 1232
  • [15] Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy
    Magin, Richard L.
    Ingo, Carson
    Colon-Perez, Luis
    Triplett, William
    Mareci, Thomas H.
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 178 : 39 - 43
  • [16] Meerschaert M, 2012, Stochastic models for fractional calculus
  • [17] Finite difference approximations for fractional advection-dispersion flow equations
    Meerschaert, MM
    Tadjeran, C
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) : 65 - 77
  • [18] Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast Poisson preconditioners
    Moroney, Timothy
    Yang, Qianqian
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 246 : 304 - 317
  • [19] Podlubny Igor, 1998, Fractional differential equationsM
  • [20] Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions
    Ren, Jincheng
    Sun, Zhi-Zhong
    Zhao, Xuan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) : 456 - 467