Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications

被引:9
作者
Ellis, Matthew A. [1 ]
Grandinetti, Giovanna [2 ]
Fichter, Katye M. [1 ]
机构
[1] Missouri State Univ, Dept Chem, Columbia, MO USA
[2] Leidos Biomed Res Inc, Frederick Natl Lab Canc Res, Ctr Mol Microscopy, Frederick, MD USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2016年 / 108期
关键词
Chemistry; Issue; 108; Quantum dots; Synthesis; Indium Phosphide; Cellular Imaging; Nanoparticles; Fluorescence; IMAGE-ANALYSIS; LIVE CELLS; NANOCRYSTALS; TOXICITY; KINETICS;
D O I
10.3791/53684
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd2+ ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.
引用
收藏
页数:9
相关论文
共 24 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment [J].
Brunetti, Virgilio ;
Chibli, Hicham ;
Fiammengo, Roberto ;
Galeone, Antonio ;
Malvindi, Maria Ada ;
Vecchio, Giuseppe ;
Cingolani, Roberto ;
Nadeau, Jay L. ;
Pompa, Pier Paolo .
NANOSCALE, 2013, 5 (01) :307-317
[3]   Localization of CdSe/ZnS quantum dots in the lysosomal acidic compartment of cultured neurons and its impact on viability: Potential role of ion release [J].
Corazzari, Ingrid ;
Gilardino, Alessandra ;
Dalmazzo, Simona ;
Fubini, Bice ;
Lovisolo, Davide .
TOXICOLOGY IN VITRO, 2013, 27 (02) :752-759
[4]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[5]   The Application of Fluorescent Quantum Dots to Confocal, Multiphoton, and Electron Microscopic Imaging [J].
Deerinck, Thomas J. .
TOXICOLOGIC PATHOLOGY, 2008, 36 (01) :112-116
[6]  
Derfus AM, 2004, NANO LETT, V4, P11, DOI 10.1021/nl0347334
[7]   A Common Mechanism Underlies the Dark Fraction Formation and Fluorescence Blinking of Quantum Dots [J].
Durisic, Nela ;
Wiseman, Paul W. ;
Gruetter, Peter ;
Heyes, Colin D. .
ACS NANO, 2009, 3 (05) :1167-1175
[8]   Kinetics of G-protein-coupled receptor endosomal trafficking pathways revealed by single quantum dots [J].
Fichter, Katye M. ;
Flajolet, Marc ;
Greengard, Paul ;
Vu, Tania Q. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (43) :18658-18663
[9]   Long-term multiple color imaging of live cells using quantum dot bioconjugates [J].
Jaiswal, JK ;
Mattoussi, H ;
Mauro, JM ;
Simon, SM .
NATURE BIOTECHNOLOGY, 2003, 21 (01) :47-51
[10]   Biological applications of quantum dots [J].
Jamieson, Timothy ;
Bakhshi, Raheleh ;
Petrova, Daniela ;
Pocock, Rachael ;
Imani, Mo ;
Seifalian, Alexander M. .
BIOMATERIALS, 2007, 28 (31) :4717-4732