A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems

被引:35
作者
John, V [1 ]
Matthies, G [1 ]
Schieweck, F [1 ]
Tobiska, L [1 ]
机构
[1] Univ Magdeburg, Inst Anal & Numer, D-29016 Magdeburg, Germany
关键词
D O I
10.1016/S0045-7825(98)80014-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a nonconforming streamline-diffusion finite element method for solving convection-diffusion problems. The theoretical and numerical investigation for triangular and tetrahedral meshes recently given by John, Maubach and Tobiska has shown that the usual application of the SDFEM gives not a sufficient stabilization. Additional parameter dependent jump terms have been proposed which preserve the same order of convergence as in the conforming case. The error analysis has been essentially based on the existence of a conforming finite element subspace of the nonconforming space. Thus, the analysis can be applied for example to the Crouzeix/Raviart element but not to the nonconforming quadrilateral elements proposed by Rannacher and Turek. In this paper, parameter free new jump terms are developed which allow to handle both the triangular and the quadrilateral case. Numerical experiments support the theoretical predictions. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 1982, THESIS CHALMERS U TE
[2]  
[Anonymous], 1996, NUMER METH PART D E
[3]  
[Anonymous], RAIRO R
[4]  
[Anonymous], 1996, CONVECTION DIFFUSION
[5]  
DOROK O, 1995, THESIS O VONGUERICKE
[6]  
Dorok O., 1996, Notes on Numerical Fluid Mechanics, V52, P20
[7]  
DOROK O, 1994, NUMERICAL METHODS NA, P50
[8]  
ERIKSSON K, 1993, MATH COMPUT, V60, P167, DOI 10.1090/S0025-5718-1993-1149289-9
[9]  
HUGHES TJR, 1979, AMD ASME, V34
[10]   Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems [J].
John, V ;
Maubach, JM ;
Tobiska, L .
NUMERISCHE MATHEMATIK, 1997, 78 (02) :165-188