Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology

被引:60
作者
Schrammen, Peter Leonard [1 ]
Ghaffari Laleh, Narmin [1 ]
Echle, Amelie [1 ]
Truhn, Daniel [2 ]
Schulz, Volkmar [3 ,4 ,5 ,6 ]
Brinker, Titus J. [7 ]
Brenner, Hermann [8 ,9 ,10 ,11 ]
Chang-Claude, Jenny [12 ,13 ]
Alwers, Elizabeth [8 ]
Brobeil, Alexander [14 ,15 ]
Kloor, Matthias [14 ]
Heij, Lara R. [16 ,17 ,18 ]
Jager, Dirk [19 ]
Trautwein, Christian [1 ]
Grabsch, Heike, I [16 ,20 ]
Quirke, Philip [20 ]
West, Nicholas P. [20 ]
Hoffmeister, Michael [8 ]
Kather, Jakob Nikolas [1 ,11 ,19 ,20 ]
机构
[1] Univ Hosp RWTH Aachen, Dept Med 3, Pauwels Str 30, D-52074 Aachen, Germany
[2] Univ Hosp RWTH Aachen, Dept Radiol, Aachen, Germany
[3] Rhein Westfal TH Aachen, Dept Phys Mol Imaging Syst, Expt Mol Imaging, Aachen, Germany
[4] MEVIS, Fraunhofer Inst Digital Med, Bremen, Germany
[5] Univ Hosp Aachen, Comprehens Diagnost Ctr Aachen CDCA, Aachen, Germany
[6] Hyper Hybrid Imaging Syst GmbH, Aachen, Germany
[7] German Canc Res Ctr, Digital Biomarkers Oncol Grp, Heidelberg, Germany
[8] German Canc Res Ctr, Div Clin Epidemiol & Aging Res, Heidelberg, Germany
[9] German Canc Res Ctr, Div Prevent Oncol, Heidelberg, Germany
[10] Natl Ctr Tumor Dis NCT, Heidelberg, Germany
[11] German Canc Res Ctr, German Canc Consortium DKTK, Heidelberg, Germany
[12] German Canc Res Ctr, Div Canc Epidemiol, Heidelberg, Germany
[13] Univ Med Ctr Hamburg Eppendorf, Univ Canc Ctr Hamburg, Canc Epidemiol Grp, Hamburg, Germany
[14] Univ Heidelberg Hosp, Inst Pathol, Heidelberg, Germany
[15] Tissue Bank Natl Ctr Tumor Dis, Tumor Bank Unit, Heidelberg, Germany
[16] Maastricht Univ, Med Ctr, GROW Sch Oncol & Dev Biol, Dept Pathol, Maastricht, Netherlands
[17] Univ Hosp RWTH Aachen, Inst Pathol, Aachen, Germany
[18] Univ Hosp RWTH Aachen, Dept Surg & Transplantat, Aachen, Germany
[19] Univ Heidelberg Hosp, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
[20] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Anal, Leeds, W Yorkshire, England
关键词
artificial intelligence; deep learning; colorectal cancer; computational pathology; digital pathology; microsatellite instability; Lynch syndrome; MICROSATELLITE INSTABILITY; COLORECTAL-CANCER;
D O I
10.1002/path.5800
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Deep learning is a powerful tool in computational pathology: it can be used for tumor detection and for predicting genetic alterations based on histopathology images alone. Conventionally, tumor detection and prediction of genetic alterations are two separate workflows. Newer methods have combined them, but require complex, manually engineered computational pipelines, restricting reproducibility and robustness. To address these issues, we present a new method for simultaneous tumor detection and prediction of genetic alterations: The Slide-Level Assessment Model (SLAM) uses a single off-the-shelf neural network to predict molecular alterations directly from routine pathology slides without any manual annotations, improving upon previous methods by automatically excluding normal and non-informative tissue regions. SLAM requires only standard programming libraries and is conceptually simpler than previous approaches. We have extensively validated SLAM for clinically relevant tasks using two large multicentric cohorts of colorectal cancer patients, Darmkrebs: Chancen der Verhutung durch Screening (DACHS) from Germany and Yorkshire Cancer Research Bowel Cancer Improvement Programme (YCR-BCIP) from the UK. We show that SLAM yields reliable slide-level classification of tumor presence with an area under the receiver operating curve (AUROC) of 0.980 (confidence interval 0.975, 0.984; n = 2,297 tumor and n = 1,281 normal slides). In addition, SLAM can detect microsatellite instability (MSI)/mismatch repair deficiency (dMMR) or microsatellite stability/mismatch repair proficiency with an AUROC of 0.909 (0.888, 0.929; n = 2,039 patients) and BRAF mutational status with an AUROC of 0.821 (0.786, 0.852; n = 2,075 patients). The improvement with respect to previous methods was validated in a large external testing cohort in which MSI/dMMR status was detected with an AUROC of 0.900 (0.864, 0.931; n = 805 patients). In addition, SLAM provides human-interpretable visualization maps, enabling the analysis of multiplexed network predictions by human experts. In summary, SLAM is a new simple and powerful method for computational pathology that could be applied to multiple disease contexts. (c) 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 37 条
[1]   Association of Aspirin and Nonsteroidal Anti-Inflammatory Drugs With Colorectal Cancer Risk by Molecular Subtypes [J].
Amitay, Efrat L. ;
Carr, Prudence R. ;
Jansen, Lina ;
Walter, Viola ;
Roth, Wilfried ;
Herpel, Esther ;
Kloor, Matthias ;
Blaeker, Hendrik ;
Chang-Claude, Jenny ;
Brenner, Hermann ;
Hoffmeister, Michael .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2019, 111 (05) :475-483
[2]   Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer [J].
Andre, T. ;
Shiu, K-K ;
Kim, T. W. ;
Jensen, B., V ;
Jensen, L. H. ;
Punt, C. ;
Smith, D. ;
Garcia-Carbonero, R. ;
Benavides, M. ;
Gibbs, P. ;
de la Fouchardiere, C. ;
Rivera, F. ;
Elez, E. ;
Bendell, J. ;
Le, D. T. ;
Yoshino, T. ;
Van Cutsem, E. ;
Yang, P. ;
Farooqui, M. Z. H. ;
Marinello, P. ;
Diaz, L. A., Jr. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (23) :2207-2218
[3]   Colon Cancer, Version 2.2021 [J].
Benson, Al B. ;
Venook, Alan P. ;
Al-Hawary, Mahmoud M. ;
Arain, Mustafa A. ;
Chen, Yi-Jen ;
Ciombor, Kristen K. ;
Cohen, Stacey ;
Cooper, Harry S. ;
Deming, Dustin ;
Farkas, Linda ;
Garrido-Laguna, Ignacio ;
Grem, Jean L. ;
Gunn, Andrew ;
Hecht, J. Randolph ;
Hoffe, Sarah ;
Hubbard, Joleen ;
Hunt, Steven ;
Johung, Kimberly L. ;
Kirilcuk, Natalie ;
Krishnamurthi, Smitha ;
Messersmith, Wells A. ;
Meyerhardt, Jeffrey ;
Miller, Eric D. ;
Mulcahy, Mary F. ;
Nurkin, Steven ;
Overman, Michael J. ;
Parikh, Aparna ;
Patel, Hitendra ;
Pedersen, Katrina ;
Saltz, Leonard ;
Schneider, Charles ;
Shibata, David ;
Skibber, John M. ;
Sofocleous, Constantinos T. ;
Stoffel, Elena M. ;
Stotsky-Himelfarb, Eden ;
Willett, Christopher G. ;
Gregory, Kristina M. ;
Gurski, Lisa A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2021, 19 (03) :329-359
[4]  
Bilal M, Novel Deep Learning Algorithm Predicts the Status of Molecular Pathways and Key Mutations in Colorectal Cancer from Routine Histology Images, V2021, DOI [10.1101/2021.01.19.21250122, DOI 10.1101/2021.01.19.21250122]
[5]   Morphological and molecular breast cancer profiling through explainable machine learning [J].
Binder, Alexander ;
Bockmayr, Michael ;
Hagele, Miriam ;
Wienert, Stephan ;
Heim, Daniel ;
Hellweg, Katharina ;
Ishii, Masaru ;
Stenzinger, Albrecht ;
Hocke, Andreas ;
Denkert, Carsten ;
Mueller, Klaus-Robert ;
Klauschen, Frederick .
NATURE MACHINE INTELLIGENCE, 2021, 3 (04) :355-366
[6]   Long-Term Risk of Colorectal Cancer After Negative Colonoscopy [J].
Brenner, Hermann ;
Chang-Claude, Jenny ;
Seiler, Christoph M. ;
Hoffmeister, Michael .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (28) :3761-3767
[7]   Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Tiulpin, Aleksei ;
Kuecuekel, Hakan ;
Lundin, Mikael ;
Nordling, Stig ;
Sihto, Harri ;
Isola, Jorma ;
Lehtimaeki, Tiina ;
Kellokumpu-Lehtinen, Pirkko-Liisa ;
von Smitten, Karl ;
Joensuu, Heikki ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2021, 11 (01)
[8]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[9]   Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning [J].
Chen, Mingyu ;
Zhang, Bin ;
Topatana, Win ;
Cao, Jiasheng ;
Zhu, Hepan ;
Juengpanich, Sarun ;
Mao, Qijiang ;
Yu, Hong ;
Cai, Xiujun .
NPJ PRECISION ONCOLOGY, 2020, 4 (01)
[10]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+