A microfluidic flow-through electrochemical reactor for wastewater treatment: A proof-of-concept

被引:45
作者
Perez, J. F. [1 ]
Llanos, J. [1 ]
Saez, C. [1 ]
Lopez, C. [1 ]
Canizares, P. [1 ]
Rodrigo, M. A. [1 ]
机构
[1] Univ Castilla La Mancha, Fac Ciencias & Tecnol Quim, Chem Engn Dept, Edificio Enrique Costa Novella, Ciudad Real 13071, Spain
关键词
Electrochemical processes; Reactor design; Microfluidic; Flow-through; 3D electrodes; Diamond anodes; ELECTRO-FENTON PROCESS; ORGANIC POLLUTANTS; CHLOROACETIC ACID; ABATEMENT; OXIDATION; DEGRADATION; CARBON; MACRO; CELLS;
D O I
10.1016/j.elecom.2017.07.026
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, a microfluidic flow-through electrochemical reactor for wastewater treatment is presented which simultaneously minimizes ohmic drop and mass transfer limitations, two of the most important bottlenecks in electrochemical wastewater treatment. A proof-of-concept comparison versus a state-of-the-art flow-by commercial reactor revealed that the proposed reactor greatly outperforms the commercial system. The novel system requires only 2.4 Ah dm(-3) (vs. 11.4 Ah dm(-3)) and 12.5 kWh m(-3) (vs. 75.0 kWh m(-3)) to completely mineralize 100 mg dm(-3) of clopyralid spiked in a low-conductive (1 mS cm(-1)) matrix with both systems using diamond anodes. The microfluidic flow-through configuration represents a promising approach to the development of cost-effective electrochemical technologies for wastewater treatment.
引用
收藏
页码:85 / 88
页数:4
相关论文
共 24 条
[1]   3D-printed porous electrodes for advanced electrochemical flow reactors: A Ni/stainless steel electrode and its mass transport characteristics [J].
Arenas, L. F. ;
de Leon, C. Ponce ;
Walsh, F. C. .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 77 :133-137
[2]   COPLANAR INTERDIGITATED BAND ELECTRODES FOR SYNTHESIS .1. OHMIC LOSS EVALUATION [J].
BELMONT, C ;
GIRAULT, HH .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1994, 24 (06) :475-480
[3]   Microstructured reactor for electroorganic synthesis [J].
Bouzek, Karel ;
Jiricny, Vladimir ;
Kodym, Roman ;
Krist'al, Jiri ;
Bystron, Tomas .
ELECTROCHIMICA ACTA, 2010, 55 (27) :8172-8181
[4]   Measurement of mass-transfer coefficients by an electrochemical technique [J].
Canizares, P. ;
Garcia-Gomez, J. ;
Fernandez de Marcos, I. ;
Rodrigo, M. A. ;
Lobato, J. .
JOURNAL OF CHEMICAL EDUCATION, 2006, 83 (08) :1204-1207
[5]  
Cotillas S., 2017, ELECTROCHIM ACTA
[6]   Carbon Nanotube Membrane Stack for Flow-through Sequential Regenerative Electro-Fenton [J].
Gao, Guandao ;
Zhang, Qiaoying ;
Hao, Zhenwei ;
Vecitis, Chad D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (04) :2375-2383
[7]   Understanding the Performance of a Microfluidic Electrolysis Cell for Routine Organic Electrosynthesis [J].
Green, Robert A. ;
Brown, Richard C. D. ;
Pletcher, Derek .
JOURNAL OF FLOW CHEMISTRY, 2015, 5 (01) :31-36
[8]  
Heitz E., 1986, PRINCIPLES ELECTROCH
[9]   Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell [J].
Hussain, Abid ;
Lebrun, Frederique Matteau ;
Tartakovsky, Boris .
ENZYME AND MICROBIAL TECHNOLOGY, 2017, 102 :41-48
[10]   Electrochemical microreactor and gas-evolving reactions [J].
Krist'al, Jiri ;
Kodym, Roman ;
Bouzek, Karel ;
Jiricny, Vladimir .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (02) :204-207