Stability Analysis of Distributed-Order Hilfer-Prabhakar Systems Based on Inertia Theory

被引:10
作者
Mashoof, M. [1 ]
Sheikhani, A. H. Refahi [1 ]
Najafi, H. Saberi [1 ]
机构
[1] Islamic Azad Univ, Lahijan Branch, Fac Math Sci, Dept Appl Math, Lahijan 1616, Iran
关键词
inertia; distributed-order Hilfer-Prabhakar derivative; stability; SMALLEST LARGEST EIGENVALUES; VECTOR ITERATION METHOD; PAIR;
D O I
10.1134/S000143461807009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of a distributed-order Hilfer-Prabhakar derivative is introduced, which reduces in special cases to the existing notions of fractional or distributed-order derivatives. The stability of two classes of distributed-order Hilfer-Prabhakar differential equations, which are generalizations of all distributed or fractional differential equations considered previously, is analyzed. Sufficient conditions for the asymptotic stability of these systems are obtained by using properties of generalized Mittag-Leffler functions, the final-value theorem, and the Laplace transform. Stability conditions for such systems are introduced by using a new definition of the inertia of a matrix with respect to the distributed-order Hilfer-Prabhakar derivative.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 31 条
[21]  
Mittag-Leffler G, 1903, CR HEBD ACAD SCI, V137, P554
[22]   Weighted FOM-inverse vector iteration method for computing a few smallest (largest) eigenvalues of pair (A, B) [J].
Najafi, H. Saberi ;
Refahi, A. ;
Akbari, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 192 (01) :239-246
[23]   FOM-inverse vector iteration method for computing a few smallest (largest) eigenvalues of pair (A,B) [J].
Najafi, H. Saberi ;
Refahi, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) :641-647
[24]   A new restarting method in the Lanczos algorithm for generalized eigenvalue problem [J].
Najafi, H. Saberi ;
Refahi, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) :421-428
[25]   Convergence Analysis of Modified Iterative Methods to Solve Linear Systems [J].
Najafi, H. Saberi ;
Edalatpanah, S. A. ;
Sheikhani, A. H. Refahi .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (03) :1019-1032
[26]   Stability Analysis of Distributed Order Fractional Differential Equations [J].
Najafi, H. Saberi ;
Sheikhani, A. Refahi ;
Ansari, A. .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[27]  
Prabhakar T. R., 1971, Yokohama Math. J., V19, P7
[28]   Stability analysis of fractional differential system with Riemann-Liouville derivative [J].
Qian, Deliang ;
Li, Changpin ;
Agarwal, Ravi P. ;
Wong, Patricia J. Y. .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) :862-874
[29]  
Rezazadeh H, 2016, MATH COMMUN, V21, P45
[30]  
Sheikhani A. H. Refahi, AIN SHAMS ENG J