Molecular dynamics simulation on notch sensitivity of nanocrystalline Cu

被引:1
作者
Wu, Hejun [1 ,2 ]
Tong, Shang [1 ,2 ]
Zhou, Jianqiu [1 ,2 ,3 ]
Zhang, Feng [1 ,2 ]
Yang, Baotong [1 ,2 ]
机构
[1] Nanjing Tech Univ, Dept Mech & Power Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Key Lab Design & Mfg Extreme Pressure Equipment, Nanjing, Jiangsu, Peoples R China
[3] Wuhan Inst Technol, Sch Mech & Elect Engn, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
stress-strain relations; tensile strength; notch strength; nanostructured materials; copper; molecular dynamics method; shear deformation; molecular dynamics simulation; notch sensitivity; edge notch; notch size; single shear band; notch root; nanocrystalline copper; tensile loadings; deformation; shear strain; stress concentration; Cu; STRESS-CONCENTRATION; DEFORMATION; NANOSCALE; BEHAVIOR; FRACTURE;
D O I
10.1049/mnl.2018.5365
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A molecular dynamics (MD) simulation was performed on the nanocrystalline (NC) Cu with an edge notch under tensile loadings, with focus on the notch sensitivity. With the increase of notch size, the dominant deformation of material changes from the shear strain, which spreads throughout the entire sample, to a single shear band, which is induced by the stress concentration at the notch root. At the same time, the samples move from notch-insensitivity to notch-sensitivity. These findings offer significant guidelines for the application of NC Cu in engineering.
引用
收藏
页码:1724 / 1727
页数:4
相关论文
共 24 条
[1]   Coupling grain boundary motion to shear deformation [J].
Cahn, John W. ;
Mishin, Yuri ;
Suzuki, Akira .
ACTA MATERIALIA, 2006, 54 (19) :4953-4975
[2]   The effects of stress concentrators on strength of materials at nanoscale: A molecular dynamics study [J].
Frantziskonis, G ;
Deymier, P .
MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (03) :352-358
[3]   Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films [J].
Gianola, D. S. ;
Van Petegem, S. ;
Legros, M. ;
Brandstetter, S. ;
Van Swygenhoven, H. ;
Hemker, K. J. .
ACTA MATERIALIA, 2006, 54 (08) :2253-2263
[4]   Micromechanical simulation of fracture behavior of bimodal nanostructured metals [J].
Guo, X. ;
Ji, R. ;
Weng, G. J. ;
Zhu, L. L. ;
Lu, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 618 :479-489
[5]   Is Stress Concentration Relevant for Nanocrystalline Metals? [J].
Kumar, Sandeep ;
Li, Xiaoyan ;
Haque, Aman ;
Gao, Huajian .
NANO LETTERS, 2011, 11 (06) :2510-2516
[6]   Assessing the critical sizes for shear band formation in metallic glasses from molecular dynamics simulation [J].
Li, Qi-Kai ;
Li, Mo .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[7]   RETRACTED: Atomic-scale analysis of deformation mechanisms of nanotwinned polycrystalline Ni nanowires during tension (Retracted article. See vol. 126, pg. 529, 2017) [J].
Liu, Hongxi ;
Zhou, Jianqiu .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 113 :27-37
[8]   Mechanical properties of nanocrystalline materials [J].
Meyers, MA ;
Mishra, A ;
Benson, DJ .
PROGRESS IN MATERIALS SCIENCE, 2006, 51 (04) :427-556
[9]   Structural stability and lattice defects in copper:: Ab initio, tight-binding, and embedded-atom calculations -: art. no. 224106 [J].
Mishin, Y ;
Mehl, MJ ;
Papaconstantopoulos, DA ;
Voter, AF ;
Kress, JD .
PHYSICAL REVIEW B, 2001, 63 (22) :2241061-22410616
[10]   Interatomic potentials for monoatomic metals from experimental data and ab initio calculations [J].
Mishin, Y ;
Farkas, D ;
Mehl, MJ ;
Papaconstantopoulos, DA .
PHYSICAL REVIEW B, 1999, 59 (05) :3393-3407