Antioxidant mechanisms of the nereidid Laeonereis acuta (Anelida: Polychaeta) to cope with environmental hydrogen peroxide

被引:23
作者
da Rosa, CE
Iurman, MG
Abreu, PC
Geracitano, LA
Monserrat, JM
机构
[1] Fundacao Univ Fed Rio Grande, Dept Ciencias Fisiol, Programa PosGrad Ciencias Fisiol Fisiol Anim Comp, BR-96201900 Rio Grande, Rio Grande Sul, Brazil
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Lab Histol Anim, RA-1053 Buenos Aires, DF, Argentina
[3] Fundacao Univ Fed Rio Grande, Dept Oceanog, BR-96201900 Rio Grande, Rio Grande Sul, Brazil
[4] Fundacao Univ Fed Rio Grande, Programa PosGraduacao Oceanog Biol, BR-96201900 Rio Grande, Rio Grande Sul, Brazil
来源
PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY | 2005年 / 78卷 / 04期
关键词
D O I
10.1086/430229
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Hydrogen peroxide (H2O2) is a naturally occurring prooxidant molecule, and its effects in the macroinvertebrate infauna were previously observed. The existence of a gradient of antioxidant enzymes activity (catalase [CAT], glutathione peroxidase [GPx], superoxide dismutase [SOD], and glutathione-S-transferase [GST]) and/or oxidative damage along the body of the estuarine polychaeta Laeonereis acuta (Polychaeta, Nereididae) was analyzed after exposure to H2O2. Because this species secretes conspicuous amounts of mucus, its capability in degrading H2O2 was studied. The results suggest that L. acuta deal with the generation of oxidative stress with different strategies along the body. In the posterior region, higher CAT and SOD activities ensure the degradation of inductors of lipid peroxidation such as H2O2 and superoxide anion (O-2(-)). The higher GST activity in anterior region aids to conjugate lipid peroxides products. In the middle region, the lack of high CAT, SOD, or GST activities correlates with the higher lipid hydroperoxide levels found after H2O2 exposure. Ten days of exposure to H2O2 also induced oxidative stress (lipid peroxidation and DNA damage)
引用
收藏
页码:641 / 649
页数:9
相关论文
共 35 条
[1]   Temporal fluctuations and spatial gradients of environmental PO2, temperature, H2O2 and H2S in its intertidal habitat trigger enzymatic antioxidant protection in the capitellid worm Heteromastus filiformis [J].
Abele, D ;
Grosspietsch, H ;
Portner, HO .
MARINE ECOLOGY PROGRESS SERIES, 1998, 163 :179-191
[2]   BIOCHEMICAL ADAPTATIONS OF NEREIS-DIVERSICOLOR (POLYCHAETA) TO TEMPORARILY INCREASED HYDROGEN-PEROXIDE LEVELS IN INTERTIDAL SANDFLATS [J].
ABELEOESCHGER, D ;
OESCHGER, R ;
THEEDE, H .
MARINE ECOLOGY PROGRESS SERIES, 1994, 106 (1-2) :101-110
[3]   Enzymatic antioxidant protection in spawn, larvae and adult worms of Phyllodoce mucosa (polychaeta) [J].
AbeleOeschger, D ;
Oeschger, R .
OPHELIA, 1995, 43 (02) :101-110
[4]   Hydrogen peroxide causes a decrease in aerobic metabolic rate and in intracellular pH in the shrimp Crangon crangon [J].
AbeleOeschger, D ;
Sartoris, FJ ;
Portner, HO .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY, 1997, 117 (02) :123-129
[5]   Antioxidant enzymes in freshwater prawn Macrobrachium malcolmsonii during embryonic and larval development [J].
Arun, S ;
Subramanian, P .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1998, 121 (03) :273-277
[6]   Oxygen metabolism in plant cell culture bacteria interactions:: role of bacterial concentration and H2O2-scavenging in survival under biological and artificial oxidative stress [J].
Baker, CJ ;
Orlandi, EW ;
Anderson, AJ .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1997, 51 (06) :401-415
[7]  
Bemvenuti CE, 1998, Ecossistemas Costeiro e Marinho do Extremo Sul do Brasil, P46
[8]  
Beutler E., 1975, Red Cell Metabolism: A Manual of Biochemical Methods, P8
[9]   Effect of hydrogen peroxide on antioxidant enzymes and metallothionein level in the digestive gland of Mytilus galloprovincialis [J].
Cavaletto, M ;
Ghezzi, A ;
Burlando, B ;
Evangelisti, V ;
Ceratto, N ;
Viarengo, A .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY, 2002, 131 (04) :447-455
[10]  
COOPER WJ, 1994, ADV CHEM SER, V237, P391