Pellet dropper device for ELM control on DIII-D

被引:0
作者
Combs, S. K. [1 ]
R-Baylor, L. [1 ]
Foust, C. R. [1 ]
McGill, J. M. [1 ]
Caughman, J. B. O. [1 ]
Fehling, D. T. [1 ]
Hansink, M. J. [2 ]
Jernigan, T. C. [1 ]
Rasmussen, D. A. [1 ]
机构
[1] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[2] Gen Atom, San Diego, CA 92186 USA
来源
22ND IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING | 2007年
关键词
ELM control; pellet injection; plasma; tokamak;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
On several experimental tokamaks, pellet injection has been found to trigger edge localized modes (ELMs) in H-mode plasmas. This can provide a technique for ELM amelioration by reducing the ELM size with small high-frequency pellets. The key for success appears to be small pellets that penetrate just beyond the separatix, enough to trigger an ELM, but not enough to strongly fuel the plasma. To provide a source of small pellets, a pellet dropper device has been developed at the Oak Ridge National Laboratory and installed on the DIII-D tokamak. The pellet dropper consists of a batch extruder with an exit nozzle to provide a filament of solid deuterium (nominal 1-mm diameter), from which pellets are punched/dropped at rates of up to approximate to 50 Hz and at speeds of <10 m/s. The pellets are propelled directly downward and through a vertical injection port on DIII-D. In this paper, the design and the initial test results are presented, and the installation on DIII-D is described.
引用
收藏
页码:179 / +
页数:2
相关论文
共 50 条
[41]   Relationship between locked modes and thermal quenches in DIII-D [J].
Sweeney, R. ;
Choi, W. ;
Austin, M. ;
Brookman, M. ;
Izzo, V. ;
Knolker, M. ;
La Haye, R. J. ;
Leonard, A. ;
Strait, E. ;
Volpe, F. A. .
NUCLEAR FUSION, 2018, 58 (05)
[42]   Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal [J].
Holod, I. ;
Lin, Z. ;
Taimourzadeh, S. ;
Nazikian, R. ;
Spong, D. ;
Wingen, A. .
NUCLEAR FUSION, 2017, 57 (01)
[43]   First demonstration of rapid shutdown using neon shattered pellet injection for thermal quench mitigation on DIII-D [J].
Commaux, N. ;
Shiraki, D. ;
Baylor, L. R. ;
Hollmann, E. M. ;
Eidietis, N. W. ;
Lasnier, C. J. ;
Moyer, R. A. ;
Jernigan, T. C. ;
Meitner, S. J. ;
Combs, S. K. ;
Foust, C. R. .
NUCLEAR FUSION, 2016, 56 (04)
[44]   Current profile measurement on the DIII-D tokamak [J].
Jayakumar, RJ ;
Allen, SL ;
Burrell, KH ;
Lao, LL ;
Makowski, MA ;
Petty, CC ;
Thomas, DM .
FUSION SCIENCE AND TECHNOLOGY, 2005, 48 (02) :852-863
[45]   Recent and future upgrades to the DIII-D tokamak [J].
Scoville, J. T. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) :651-654
[46]   Experimental imaging of separatrix splitting on DIII-D [J].
Shafer, M. W. ;
Unterberg, E. A. ;
Orlov, D. M. ;
Evans, T. E. ;
Harris, J. H. ;
Hillis, D. L. ;
Maingi, R. ;
Moyer, R. A. ;
Nazikian, R. ;
Wingen, A. .
NUCLEAR FUSION, 2012, 52 (12)
[47]   Improved langmuir probe array for DIII-D [J].
Taussig, D. A. ;
Watkins, J. G. ;
Boivin, R. L. .
22ND IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2007, :342-+
[48]   Transport of tungsten to collector probes in DIII-D [J].
Zamperini, S. ;
Donovan, D. ;
Unterberg, E. ;
Stangeby, P. ;
Nichols, J. ;
Duran, J. ;
Elder, D. ;
Neff, A. ;
Rudakov, D. ;
Zach, M. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :87-92
[49]   Progress toward an advanced tokamak at DIII-D [J].
Kellman, AG .
FUSION ENGINEERING AND DESIGN, 2001, 56-57 :801-805
[50]   Overview of the DIII-D fusion science program [J].
Luxon, JL ;
Simonen, TC ;
Stambaugh, RD .
FUSION SCIENCE AND TECHNOLOGY, 2005, 48 (02) :807-827