Radford's theorem about Hopf braces

被引:4
作者
Zhu, Haixing [1 ]
Ying, Zhiling [2 ]
机构
[1] Nanjing Forestry Univ, Coll Econ & Management, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
关键词
Hopf braces; braided Hopf algebras; Yang-Baxter equations; YetterDrinfeld modules; BAXTER; ALGEBRAS; PRODUCTS;
D O I
10.1080/00927872.2021.1982955
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a Hopf algebra with bijective antipode. In this paper we prove that, if A is a Hopf brace with some projection on H, then there exists a compatible braided Hopf brace R such that A is isomorphic to R#H as Hopf braces, where R#H is some Radford's biproduct Hopf algebra. This should be viewed as the brace version of well-known Radford's theorem about Hopf algebras with a projection. This provides a new method to construct Hopf braces by some braided Hopf algebras.
引用
收藏
页码:1426 / 1440
页数:15
相关论文
共 28 条
[1]   Constructing Hopf braces [J].
Agore, A. L. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (02)
[2]   On the classification of finite-dimensional pointed Hopf algebras [J].
Andruskiewitsch, Nicolas ;
Schneider, Hans-Juergen .
ANNALS OF MATHEMATICS, 2010, 171 (01) :375-417
[3]   HOPF BRACES AND YANG-BAXTER OPERATORS [J].
Angiono, Ivan ;
Galindo, Cesar ;
Vendramin, Leandro .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) :1981-1995
[4]   ITERATED MATCHED PRODUCTS OF FINITE BRACES AND SIMPLICITY; NEW SOLUTIONS OF THE YANG-BAXTER EQUATION [J].
Bachiller, D. ;
Cedo, F. ;
Jespers, E. ;
Okninski, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (07) :4881-4907
[5]   Solutions of the Yang-Baxter equation associated with a left brace [J].
Bachiller, David ;
Cedo, Ferran ;
Jespers, Eric .
JOURNAL OF ALGEBRA, 2016, 463 :80-102
[6]   Classification of braces of order p3 [J].
Bachiller, David .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (08) :3568-3603
[7]   TRUSSES: BETWEEN BRACES AND RINGS [J].
Brzezinski, Tomasz .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (06) :4149-4176
[8]   Semi-braces and the Yang Baxter equation [J].
Catino, Francesco ;
Colazzo, Ilaria ;
Stefanelli, Paola .
JOURNAL OF ALGEBRA, 2017, 483 :163-187
[9]   Braces and the Yang-Baxter Equation [J].
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) :101-116
[10]  
Cedó F, 2010, T AM MATH SOC, V362, P2541