n-Butanol production by Rhodopseudomonas palustris TIE-1

被引:33
作者
Bai, Wei [1 ]
Ranaivoarisoa, Tahina Onina [2 ]
Singh, Rajesh [2 ]
Rengasamy, Karthikeyan [2 ]
Bose, Arpita [2 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63110 USA
[2] Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
PHOTOSYNTHETIC PRODUCTION; NITROGENASE ACTIVITY; ELECTRON-TRANSFER; 1-BUTANOL; BUTYRATE; LIGHT; ELECTROSYNTHESIS; FERMENTATION; EFFICIENCIES; MECHANISM;
D O I
10.1038/s42003-021-02781-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bai et al show that the anoxygenic phototroph strain TIE-1 can produce n-butanol using organic acids or CO2 as a carbon source, light as an energy source, and H-2, Fe(II), or electrons from renewably generated electricity as an electron source. This study opens the possibility of producing carbon-neutral biofuels using these bacteria. Anthropogenic carbon dioxide (CO2) release in the atmosphere from fossil fuel combustion has inspired scientists to study CO2 to biofuel conversion. Oxygenic phototrophs such as cyanobacteria have been used to produce biofuels using CO2. However, oxygen generation during oxygenic photosynthesis adversely affects biofuel production efficiency. To produce n-butanol (biofuel) from CO2, here we introduce an n-butanol biosynthesis pathway into an anoxygenic (non-oxygen evolving) photoautotroph, Rhodopseudomonas palustris TIE-1 (TIE-1). Using different carbon, nitrogen, and electron sources, we achieve n-butanol production in wild-type TIE-1 and mutants lacking electron-consuming (nitrogen-fixing) or acetyl-CoA-consuming (polyhydroxybutyrate and glycogen synthesis) pathways. The mutant lacking the nitrogen-fixing pathway produce the highest n-butanol. Coupled with novel hybrid bioelectrochemical platforms, this mutant produces n-butanol using CO2, solar panel-generated electricity, and light with high electrical energy conversion efficiency. Overall, this approach showcases TIE-1 as an attractive microbial chassis for carbon-neutral n-butanol bioproduction using sustainable, renewable, and abundant resources.
引用
收藏
页数:16
相关论文
共 75 条
[11]   Electron uptake by iron-oxidizing phototrophic bacteria [J].
Bose, A. ;
Gardel, E. J. ;
Vidoudez, C. ;
Parra, E. A. ;
Girguis, P. R. .
NATURE COMMUNICATIONS, 2014, 5 :3391
[12]   Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture [J].
Buehler, Edward A. ;
Mesbah, Ali .
PLOS ONE, 2016, 11 (08)
[13]   IUPAC Solubility Data Project 1973-2001 [J].
Clever, HL .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2004, 49 (06) :1521-1529
[14]   Review on the characteristics of butanol, its production and use as fuel in internal combustion engines [J].
da Silva Trindade, Wagner Roberto ;
dos Santos, Rogerio Goncalves .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 :642-651
[15]  
Davis D., 1973, BACTERIAL PHYSL MICR, V22, P96
[16]   Genetic regulation of biological nitrogen fixation [J].
Dixon, R ;
Kahn, D .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (08) :621-631
[17]   Metabolic engineering of Rhodopseudomonas palustris for the obligate reduction of n-butyrate to n-butanol [J].
Doud, Devin F. R. ;
Holmes, Eric C. ;
Richter, Hanno ;
Molitor, Bastian ;
Jander, Georg ;
Angenent, Largus T. .
BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
[18]   Toward Electrosynthesis with Uncoupled Extracellular Electron Uptake and Metabolic Growth: Enhancing Current Uptake with Rhodopseudomonas palustris [J].
Doud, Devin F. R. ;
Angenent, Largus T. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2014, 1 (09) :351-355
[19]  
Duerre Peter, 2007, Biotechnology Journal, V2, P1525, DOI 10.1002/biot.200700168
[20]   Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824 [J].
Fontaine, L ;
Meynial-Salles, I ;
Girbal, L ;
Yang, XH ;
Croux, C ;
Soucaille, P .
JOURNAL OF BACTERIOLOGY, 2002, 184 (03) :821-830