n-Butanol production by Rhodopseudomonas palustris TIE-1

被引:33
作者
Bai, Wei [1 ]
Ranaivoarisoa, Tahina Onina [2 ]
Singh, Rajesh [2 ]
Rengasamy, Karthikeyan [2 ]
Bose, Arpita [2 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63110 USA
[2] Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
PHOTOSYNTHETIC PRODUCTION; NITROGENASE ACTIVITY; ELECTRON-TRANSFER; 1-BUTANOL; BUTYRATE; LIGHT; ELECTROSYNTHESIS; FERMENTATION; EFFICIENCIES; MECHANISM;
D O I
10.1038/s42003-021-02781-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bai et al show that the anoxygenic phototroph strain TIE-1 can produce n-butanol using organic acids or CO2 as a carbon source, light as an energy source, and H-2, Fe(II), or electrons from renewably generated electricity as an electron source. This study opens the possibility of producing carbon-neutral biofuels using these bacteria. Anthropogenic carbon dioxide (CO2) release in the atmosphere from fossil fuel combustion has inspired scientists to study CO2 to biofuel conversion. Oxygenic phototrophs such as cyanobacteria have been used to produce biofuels using CO2. However, oxygen generation during oxygenic photosynthesis adversely affects biofuel production efficiency. To produce n-butanol (biofuel) from CO2, here we introduce an n-butanol biosynthesis pathway into an anoxygenic (non-oxygen evolving) photoautotroph, Rhodopseudomonas palustris TIE-1 (TIE-1). Using different carbon, nitrogen, and electron sources, we achieve n-butanol production in wild-type TIE-1 and mutants lacking electron-consuming (nitrogen-fixing) or acetyl-CoA-consuming (polyhydroxybutyrate and glycogen synthesis) pathways. The mutant lacking the nitrogen-fixing pathway produce the highest n-butanol. Coupled with novel hybrid bioelectrochemical platforms, this mutant produces n-butanol using CO2, solar panel-generated electricity, and light with high electrical energy conversion efficiency. Overall, this approach showcases TIE-1 as an attractive microbial chassis for carbon-neutral n-butanol bioproduction using sustainable, renewable, and abundant resources.
引用
收藏
页数:16
相关论文
共 75 条
[1]   Nature inspired artificial photosynthesis technologies for hydrogen production: Barriers and challenges [J].
Abas, Naeem ;
Kalair, Esmat ;
Kalair, Anam ;
ul Hasan, Qadeer ;
Khan, Nasrullah .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (41) :20787-20799
[2]   Promising evolution of biofuel generations. Subject review [J].
Alalwan, Hayder A. ;
Alminshid, Alaa H. ;
Aljaafari, Haydar A. S. .
RENEWABLE ENERGY FOCUS, 2019, 28 :127-139
[3]   Silicon solar cells: toward the efficiency limits [J].
Andreani, Lucio Claudio ;
Bozzola, Angelo ;
Kowalczewski, Piotr ;
Liscidini, Marco ;
Redorici, Lisa .
ADVANCES IN PHYSICS-X, 2019, 4 (01)
[4]   Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production [J].
Anfelt, Josefine ;
Kaczmarzyk, Danuta ;
Shabestary, Kiyan ;
Renberg, Bjorn ;
Rockberg, Johan ;
Nielsen, Jens ;
Uhlen, Mathias ;
Hudson, Elton P. .
MICROBIAL CELL FACTORIES, 2015, 14
[5]   From first generation biofuels to advanced solar biofuels [J].
Aro, Eva-Mari .
AMBIO, 2016, 45 :24-31
[6]   Metabolic engineering for advanced biofuels production from Escherichia coli [J].
Atsumi, Shota ;
Liao, James C. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (05) :414-419
[7]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[8]   Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells [J].
Berginski, Michael ;
Huepkes, Juergen ;
Gordijn, Aad ;
Reetz, Wilfried ;
Waetjen, Timo ;
Rech, Bernd ;
Wuttig, Matthias .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (09) :1037-1042
[9]   Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement [J].
Blankenship, Robert E. ;
Tiede, David M. ;
Barber, James ;
Brudvig, Gary W. ;
Fleming, Graham ;
Ghirardi, Maria ;
Gunner, M. R. ;
Junge, Wolfgang ;
Kramer, David M. ;
Melis, Anastasios ;
Moore, Thomas A. ;
Moser, Christopher C. ;
Nocera, Daniel G. ;
Nozik, Arthur J. ;
Ort, Donald R. ;
Parson, William W. ;
Prince, Roger C. ;
Sayre, Richard T. .
SCIENCE, 2011, 332 (6031) :805-809
[10]  
Bond-Watts BB, 2011, NAT CHEM BIOL, V7, P222, DOI [10.1038/nchembio.537, 10.1038/NCHEMBIO.537]