Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design

被引:215
|
作者
Du, Jiaqi [1 ,2 ]
Hu, Ke [2 ]
Zhang, Jinyuan [1 ]
Meng, Lei [1 ,2 ]
Yue, Jiling [3 ]
Angunawela, Indunil [4 ,5 ]
Yan, Hongping [6 ]
Qin, Shucheng [1 ,2 ]
Kong, Xiaolei [1 ,2 ]
Zhang, Zhanjun [2 ]
Guan, Bo [3 ]
Ade, Harald [4 ,5 ]
Li, Yongfang [1 ,2 ,7 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, CAS Key Lab Organ Solids, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Ctr Physiochem Anal & Measurement, Inst Chem, Beijing, Peoples R China
[4] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[5] North Carolina State Univ, Organ & Carbon Elect Lab ORaCEL, Raleigh, NC 27695 USA
[6] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[7] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Coll Chem, Lab Adv Optoelect Mat,Suzhou Key Lab Novel Semico, Suzhou, Jiangsu, Peoples R China
关键词
POWER CONVERSION EFFICIENCY; AGGREGATION; SOLVENT; WEIGHT; DONOR; STATE;
D O I
10.1038/s41467-021-25638-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
All-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs) have made significant progress recently. Here, we synthesize two A-DA'D-A small molecule acceptor based PSMAs of PS-Se with benzo[c][1,2,5]thiadiazole A'-core and PN-Se with benzotriazole A'-core, for the studies of the effect of molecular structure on the photovoltaic performance of the PSMAs. The two PSMAs possess broad absorption with PN-Se showing more red-shifted absorption than PS-Se and suitable electronic energy levels for the application as polymer acceptors in the all-PSCs with PBDB-T as polymer donor. Cryogenic transmission electron microscopy visualizes the aggregation behavior of the PBDB-T donor and the PSMA in their solutions. In addition, a bicontinuous-interpenetrating network in the PBDB-T:PN-Se blend film with aggregation size of 10 similar to 20 nm is clearly observed by the photoinduced force microscopy. The desirable morphology of the PBDB-T:PN-Se active layer leads its all-PSC showing higher power conversion efficiency of 16.16%.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] All-polymer solar cells performance enhanced via side-chain engineering of the polymer acceptor
    Li, Xiangzhi
    Liu, Xiaoyuan
    Sun, Po
    Shan, Haiquan
    You, Cong
    Zhao, Liang
    Wang, Yulong
    Xu, Jiaju
    Chen, Zhi-Kuan
    Xu, Zong-Xiang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (07) : 5407 - 5414
  • [32] A double B←N bridged bipyridine (BNBP)-based polymer electron acceptor: all-polymer solar cells with a high donor : acceptor blend ratio
    Long, Xiaojing
    Ding, Zicheng
    Dou, Chuandong
    Liu, Jun
    Wang, Lixiang
    MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (05) : 852 - 858
  • [33] Effect of polymer donor aggregation on the active layer morphology of amorphous polymer acceptor-based all-polymer solar cells
    Zhang, Lu
    Ding, Zicheng
    Zhao, Ruyan
    Feng, Jirui
    Ma, Wei
    Liu, Jun
    Wang, Lixiang
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (16) : 5613 - 5619
  • [34] Impact of Acceptor Fluorination on the Performance of All-Polymer Solar Cells
    Deshmukh, Kedar D.
    Matsidik, Rukiya
    Prasad, Shyamal K. K.
    Chandrasekaran, Naresh
    Welford, Adam
    Connal, Luke A.
    Liu, Amelia C. Y.
    Gann, Eliot
    Thomsen, Lars
    Kabra, Dinesh
    Hodgkiss, Justin M.
    Sommer, Michael
    McNeill, Christopher R.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (01) : 955 - 969
  • [35] Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells
    Zhou, Ke
    Zhang, Rui
    Liu, Jiangang
    Li, Mingguang
    Yu, Xinhong
    Xing, Rubio
    Han, Yanchun
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (45) : 25352 - 25361
  • [36] Morphology control in high-efficiency all-polymer solar cells
    Zhou, Kangkang
    Xian, Kaihu
    Ye, Long
    INFOMAT, 2022, 4 (04)
  • [37] Indacenodithienothiophene-naphthalene diimide copolymer as an acceptor for all-polymer solar cells
    Xue, Lingwei
    Yang, Yankang
    Zhang, Zhi-Guo
    Dong, Xinning
    Gao, Liang
    Bin, Haijun
    Zhang, Jing
    Yang, YunXu
    Li, Yongfang
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (16) : 5810 - 5816
  • [38] Simple perylene diimide based polymer acceptor with tuned aggregation for efficient all-polymer solar cells
    Liu, Zhilin
    Du, Zurong
    Wang, Xunchang
    Zhu, Dangqiang
    Yang, Chunming
    Yang, Wu
    Qu, Xiaofei
    Bao, Xichang
    Yang, Renqiang
    DYES AND PIGMENTS, 2019, 170
  • [39] Controlling molecular weight of naphthalenediimide-based polymer acceptor P(NDI20D-T2) for high performance all-polymer solar cells
    Lei, Yu
    Sun, Jianxia
    Yuan, Jianyu
    Gu, Jinan
    Ding, Guanqun
    Ma, Wanli
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2017, 33 (05) : 411 - 417
  • [40] Engineering the morphology via processing additives in multiple all-polymer solar cells for improved performance
    Yuan, Jianyu
    Xu, Yalong
    Shi, Guozheng
    Ling, Xufeng
    Ying, Lei
    Huang, Fei
    Lee, Tack Ho
    Woo, Han Young
    Kim, Jin Young
    Cao, Yong
    Ma, Wanli
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (22) : 10421 - 10432