Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design

被引:215
|
作者
Du, Jiaqi [1 ,2 ]
Hu, Ke [2 ]
Zhang, Jinyuan [1 ]
Meng, Lei [1 ,2 ]
Yue, Jiling [3 ]
Angunawela, Indunil [4 ,5 ]
Yan, Hongping [6 ]
Qin, Shucheng [1 ,2 ]
Kong, Xiaolei [1 ,2 ]
Zhang, Zhanjun [2 ]
Guan, Bo [3 ]
Ade, Harald [4 ,5 ]
Li, Yongfang [1 ,2 ,7 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, CAS Key Lab Organ Solids, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Ctr Physiochem Anal & Measurement, Inst Chem, Beijing, Peoples R China
[4] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[5] North Carolina State Univ, Organ & Carbon Elect Lab ORaCEL, Raleigh, NC 27695 USA
[6] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[7] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Coll Chem, Lab Adv Optoelect Mat,Suzhou Key Lab Novel Semico, Suzhou, Jiangsu, Peoples R China
关键词
POWER CONVERSION EFFICIENCY; AGGREGATION; SOLVENT; WEIGHT; DONOR; STATE;
D O I
10.1038/s41467-021-25638-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
All-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs) have made significant progress recently. Here, we synthesize two A-DA'D-A small molecule acceptor based PSMAs of PS-Se with benzo[c][1,2,5]thiadiazole A'-core and PN-Se with benzotriazole A'-core, for the studies of the effect of molecular structure on the photovoltaic performance of the PSMAs. The two PSMAs possess broad absorption with PN-Se showing more red-shifted absorption than PS-Se and suitable electronic energy levels for the application as polymer acceptors in the all-PSCs with PBDB-T as polymer donor. Cryogenic transmission electron microscopy visualizes the aggregation behavior of the PBDB-T donor and the PSMA in their solutions. In addition, a bicontinuous-interpenetrating network in the PBDB-T:PN-Se blend film with aggregation size of 10 similar to 20 nm is clearly observed by the photoinduced force microscopy. The desirable morphology of the PBDB-T:PN-Se active layer leads its all-PSC showing higher power conversion efficiency of 16.16%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] New Perylenediimide Polymer Acceptor Design and Their Applications to All-polymer Solar Cells
    Guo, Yi-kun
    Zhao, Da-hui
    ACTA POLYMERICA SINICA, 2018, (02): : 174 - 185
  • [2] Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability
    Li, Zhenye
    Zhong, Wenkai
    Ying, Lei
    Liu, Feng
    Li, Ning
    Huang, Fei
    Cao, Yong
    NANO ENERGY, 2019, 64
  • [3] Active Layer Morphology Engineering of All-polymer Solar Cells by Systematically Tuning Molecular Weights of Polymer Donors/Acceptors
    Wang, Ning
    Yu, Ying-Jian
    Zhao, Ru-Yan
    Zhang, Ji-Dong
    Liu, Jun
    Wang, Li-Xiang
    CHINESE JOURNAL OF POLYMER SCIENCE, 2021, 39 (11) : 1449 - 1458
  • [4] Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7%
    Li, Yun
    Song, Jiali
    Dong, Yicai
    Jin, Hui
    Xin, Jingming
    Wang, Shijie
    Ca, Yunhao
    Jiang, Lang
    Ma, Wei
    Tang, Zheng
    Sun, Yanming
    ADVANCED MATERIALS, 2022, 34 (14)
  • [5] Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All-Polymer Solar Cells
    Wang, Gang
    Eastham, Nicholas D.
    Aldrich, Thomas J.
    Ma, Boran
    Manley, Eric F.
    Chen, Zhihua
    Chen, Lin X.
    de la Cruz, Monica Olvera
    Chang, Robert P. H.
    Melkonyan, Ferdinand S.
    Facchetti, Antonio
    Marks, Tobin J.
    ADVANCED ENERGY MATERIALS, 2018, 8 (12)
  • [6] Polymerizing small molecular acceptors for efficient all-polymer solar cells
    Kong, Yuxin
    Li, Yuxiang
    Yuan, Jianyu
    Ding, Liming
    INFOMAT, 2022, 4 (03)
  • [7] Efficient all-polymer solar cells based on a narrow-bandgap polymer acceptor
    Yin, Zhihong
    Wang, Yang
    Guo, Qing
    Zhu, Lei
    Liu, Haiqin
    Fang, Jin
    Guo, Xia
    Liu, Feng
    Tang, Zheng
    Zhang, Maojie
    Li, Yongfang
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (45) : 16180 - 16187
  • [8] Tuning the Molecular Weight of the Electron Accepting Polymer in All-Polymer Solar Cells: Impact on Morphology and Charge Generation
    Deshmukh, Kedar D.
    Matsidik, Rukiya
    Prasad, Shyamal K. K.
    Connal, Luke A.
    Liu, Amelia C. Y.
    Gann, Eliot
    Thomsen, Lars
    Hodgkiss, Justin M.
    Sommer, Michael
    McNeill, Christopher R.
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (18)
  • [9] A Universal Fluorinated Polymer Acceptor Enables All-Polymer Solar Cells with >15% Efficiency
    Peng, Feng
    An, Kang
    Zhong, Wenkai
    Li, Zhenye
    Ying, Lei
    Li, Ning
    Huang, Zhenqiang
    Zhu, Chunguang
    Fan, Baobing
    Huang, Fei
    Cao, Yong
    ACS ENERGY LETTERS, 2020, 5 (12): : 3702 - 3707
  • [10] Elucidating the impact of molecular weight on morphology, charge transport, photophysics and performance of all-polymer solar cells
    Tran, Duyen K.
    Robitaille, Amelie
    Hai, I. Jo
    Ding, Xiaomei
    Kuzuhara, Daiki
    Koganezawa, Tomoyuki
    Chiu, Yu-Cheng
    Leclerc, Mario
    Jenekhe, Samson A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (40) : 21070 - 21083