An upper bound for the chromatic number of line graphs

被引:14
作者
King, A. D. [1 ]
Reed, B. A. [1 ]
Vetta, A. [1 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2T5, Canada
关键词
D O I
10.1016/j.ejc.2007.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was conjectured by Reed [B. Reed, omega, alpha, and chi, Journal of Graph Theory 27 (1998) 177-212] that for any graph G, the graph's chromatic number chi(G) is bounded above by [Delta(G)+1+(omega)(G)/2], where Delta(G) and omega(G) are the rnaximum degree and clique number of G, respectively. In this paper we prove that this hound holds if G is the line graph of a multigraph. The proof yields a polynomial tirne algorithm that takes a line graph G and produces a colouring that achieves our bound. (C) 2007 Published by Elsevier Ltd.
引用
收藏
页码:2182 / 2187
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 1964, DISKRET ANAL
[2]   On colouring the nodes of a network [J].
Brooks, RL .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 :194-197
[3]   Improving a family of approximation algorithms to edge color multigraphs [J].
Caprara, A ;
Rizzi, R .
INFORMATION PROCESSING LETTERS, 1998, 68 (01) :11-15
[4]   MAXIMUM MATCHING AND A POLYHEDRON WITH O'1-VERTICES [J].
EDMONDS, J .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2) :125-+
[5]  
Goldberg M.K., 1973, Diskretn. Anal., V23, P3
[6]  
Hall P, 1935, J. Lond. Math. Soc., Vs1-10, P26, DOI DOI 10.1112/JLMS/S1-10.37.26
[7]   THE NP-COMPLETENESS OF EDGE-COLORING [J].
HOLYER, I .
SIAM JOURNAL ON COMPUTING, 1981, 10 (04) :718-720
[8]  
Kahn J, 2000, RANDOM STRUCT ALGOR, V17, P117, DOI 10.1002/1098-2418(200009)17:2<117::AID-RSA3>3.0.CO
[9]  
2-9
[10]   Asymptotics of the chromatic index for multigraphs [J].
Kahn, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 68 (02) :233-254