Numerical analysis for the heat flux in a mixed elliptic problem to obtain a discrete steady-state two-phase Stefan problem

被引:4
作者
Tarzia, DA
机构
[1] Departamento de Matemática, FCE, Universidad Austral, (2000) Rosario
关键词
steady-state Stefan problem; finite element method; mixed elliptic problem; numerical analysis; variational inequalities; error bounds;
D O I
10.1137/S0036142993240187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a material Omega subset of R(n) which occupies a convex polygonal bounded domain with regular boundary Gamma = Gamma(1) boolean OR Gamma(2) (with Gamma(1) boolean AND Gamma(2) = 0) with meas(Gamma(1)) = \Gamma(1)\ > 0 and \Gamma(2)\ > 0. We assume, without loss of generality, that the melting temperature is 0 degrees C. We apply a temperature b = Const > 0 on Gamma(1) and a heat flux q = Const > 0 on Gamma(2). We consider a steady-state heat conduction problem in Omega. We consider a regular triangulation of the domain Omega with Lagrange triangles of type 1. We study sufficient (and/or necessary) conditions on the heat flux q on Gamma(2) to obtain a change of phase (steady-state, two-phase, discretized Stefan problem) in the corresponding discretized domain, that is, a discrete temperature of nonconstant sign in Omega.
引用
收藏
页码:1257 / 1265
页数:9
相关论文
共 12 条
[1]  
Brezzi F, 1987, FINITE ELEMENT HDB
[2]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
[3]  
DUVAUT G, 1976, 185 INRIA LABORIA IR
[4]  
GRISVARD P, 1976, NUMERICAL SOLUTION P, V3, P207
[5]  
KINDERLEHRER D, 1980, INTRO VARIATIONAL IN
[6]   VARIATIONAL INEQUALITY WITH MIXED BOUNDARY-CONDITIONS [J].
MURTHY, MKV .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (1-2) :188-224
[7]  
NOCHETTO RH, 1985, RES NOTES MATH, V120, P50
[8]  
RODRIGUES JF, 1985, RES NOTES MATH, V120, P72
[9]   REGULARIZATION OF MIXED 2ND-ORDER ELLIPTIC PROBLEMS [J].
SHAMIR, E .
ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) :150-&
[10]  
TARZIA DA, 1988, ENG ANAL BOUND ELEM, V5, P177