Nilpotent Lie algebras with 2-dimensional commutator ideals

被引:14
作者
Bartolone, C. [1 ]
Di Bartolo, A. [1 ]
Falcone, G. [1 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
关键词
Nilpotent Lie algebras; Pairs of alternating forms; CLASSIFICATION;
D O I
10.1016/j.laa.2010.09.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify all (finitely dimensional) nilpotent Lie k-algebras h with 2-dimensional commutator ideals h', extending a known result to the case where h' is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h' is central, it is independent of k if h' is non-central and is uniquely determined by the dimension of h. In the case where k is algebraically or real closed, we also list all nilpotent Lie k-algebras h with 2-dimensional central commutator ideals h' and dim(k) h <= 11. Published by Elsevier Inc.
引用
收藏
页码:650 / 656
页数:7
相关论文
共 7 条
[1]   Problems of classifying associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild [J].
Belitskii, G ;
Lipyanski, R ;
Sergeichuk, VV .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 407 :249-262
[2]   CLASSIFICATION OF COMPLEX NILPOTENT LIE-ALGEBRAS OF DIMENSION-7 [J].
BERMUDEZ, JMA ;
GOZE, M .
ARCHIV DER MATHEMATIK, 1989, 52 (02) :175-185
[3]  
DIXIMIER J, 1957, B SOC MATH FRANCE, V85, P325
[4]   CLASSIFICATION OF METABELIAN LIE-ALGEBRAS [J].
GAUGER, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) :293-329
[5]  
Morozov V., 1958, Izv. Vyss. Ucebn. Zaved., Mat., P161
[6]   PAIRS OF ALTERNATING FORMS [J].
SCHARLAU, R .
MATHEMATISCHE ZEITSCHRIFT, 1976, 147 (01) :13-19
[7]  
VRANCEANU GH, 1975, LECONS GEOMETRIE DIF, VIV