Bernstein-Schurer-Kantorovich operators based on q-integers

被引:17
作者
Agrawal, P. N. [1 ]
Finta, Zoltan [2 ]
Kumar, A. Sathish [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Univ Babes Bolyai, Dept Math, Cluj Napoca 400084, Romania
关键词
q-Bernstein-Schurer-Kantorovich operators; q-Integers; Rate of convergence; Modulus of smoothness; Lipschitz type maximal function; A-statistical convergence; APPROXIMATION; INEQUALITIES; CONVERGENCE;
D O I
10.1016/j.amc.2014.12.106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new Kantorovich type generalization of the q-Bernstein-Schurer operators defined in Muraru (2011). First, we give the basic convergence theorem and then obtain the local direct results for these operators, estimating the rate of convergence by using the modulus of smoothness and the Lipschitz type maximal function, respectively. We also obtain a Voronovskaja type theorem and investigate the statistical approximation properties of these operators with the help of a Korovkin type statistical approximation theorem given in Duman (2008). (C) 2015 Elsevier Inc. All rights reserved. nk
引用
收藏
页码:222 / 231
页数:10
相关论文
共 26 条
[1]  
Agratini O, 2008, CARPATHIAN J MATH, V24, P281
[2]   Stancu type generalization of modified Schurer operators based on q-integers [J].
Agrawal, P. N. ;
Kumar, A. Sathish ;
Sinha, T. A. K. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :765-776
[3]   On q-analogue of Bernstein-Schurer-Stancu operators [J].
Agrawal, P. N. ;
Gupta, Vijay ;
Kumar, A. Sathish .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) :7754-7764
[4]  
Altomare F., 1994, de Gruyter Series Studies in Mathematics, V17
[5]  
[Anonymous], 2002, Universitext
[6]  
Aral A., 2013, APPL CALCULUS OPERAT
[7]   On statistical approximation properties of Kantorovich type q-Bernstein operators [J].
Dalmanoglu, Oezge ;
Dogru, Oguen .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) :760-771
[8]  
Dalmanoglu O, 2007, APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, P113
[9]  
Duman O, 2008, TAIWAN J MATH, V12, P523
[10]   Durrmeyer type modification of generalized Baskakov operators [J].
Erencin, Aysegul .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) :4384-4390