Modeling Red Blood Cell Viscosity Contrast Using Inner Soft Particle Suspension

被引:5
作者
Bohinikova, Alzbeta [1 ]
Jancigova, Iveta [2 ]
Cimrak, Ivan [1 ,2 ]
机构
[1] Univ Zilina, Res Ctr, Zilina 01026, Slovakia
[2] Univ Zilina, Cell In Fluid Biomed Modelling & Computat Grp, Fac Management Sci & Informat, Zilina 01026, Slovakia
关键词
viscosity; dissipative particles; blood cells; computational modeling; rheology; MEMBRANE; PROTEIN; DEFORMATION; DYNAMICS; PACKING; SHAPE;
D O I
10.3390/mi12080974
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The inner viscosity of a biological red blood cell is about five times larger than the viscosity of the blood plasma. In this work, we use dissipative particles to enable the proper viscosity contrast in a mesh-based red blood cell model. Each soft particle represents a coarse-grained virtual cluster of hemoglobin proteins contained in the cytosol of the red blood cell. The particle interactions are governed by conservative and dissipative forces. The conservative forces have purely repulsive character, whereas the dissipative forces depend on the relative velocity between the particles. We design two computational experiments that mimic the classical viscometers. With these experiments we study the effects of particle suspension parameters on the inner cell viscosity and provide parameter sets that result in the correct viscosity contrast. The results are validated with both static and dynamic biological experiment, showing an improvement in the accuracy of the original model without major increase in computational complexity.
引用
收藏
页数:17
相关论文
共 50 条
[1]   Swinging of red blood cells under shear flow [J].
Abkarian, Manouk ;
Faivre, Magalie ;
Viallat, Annie .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[2]   Clusters of circulating tumor cells traverse capillary-sized vessels [J].
Au, Sam H. ;
Storey, Brian D. ;
Moore, John C. ;
Tang, Qin ;
Chen, Yeng-Long ;
Javaid, Sarah ;
Sarioglu, A. Fatih ;
Sullivan, Ryan ;
Madden, Marissa W. ;
O'Keefe, Ryan ;
Haber, Daniel A. ;
Maheswaran, Shyamala ;
Langenau, David M. ;
Stott, Shannon L. ;
Toner, Mehmet .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (18) :4947-4952
[3]   BROWNIAN DIFFUSION OF PARTICLES WITH HYDRODYNAMIC INTERACTION [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1976, 74 (MAR9) :1-29
[4]   EFFECT OF BROWNIAN-MOTION ON BULK STRESS IN A SUSPENSION OF SPHERICAL-PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1977, 83 (NOV) :97-117
[5]   Particle dynamics modeling methods for colloid suspensions [J].
Bolintineanu, Dan S. ;
Grest, Gary S. ;
Lechman, Jeremy B. ;
Pierce, Flint ;
Plimpton, Steven J. ;
Schunk, P. Randall .
COMPUTATIONAL PARTICLE MECHANICS, 2014, 1 (03) :321-356
[6]   ELECTRON MICROSCOPE STUDIES ON HAEMOGLOBIN MOLECULES [J].
CHATTERJEE, S ;
SADHUKHAN, P ;
CHATTERJEA, JB .
JOURNAL OF BIOPHYSICAL AND BIOCHEMICAL CYTOLOGY, 1961, 10 (01) :113-&
[7]   Effect of cytosol viscosity on the flow behavior of red blood cell suspensions in microvessels [J].
Chien, Wei ;
Gompper, Gerhard ;
Fedosov, Dmitry A. .
MICROCIRCULATION, 2021, 28 (02)
[8]   RHEOLOGICAL COMPARISON OF HEMOGLOBIN SOLUTIONS AND ERYTHROCYTE SUSPENSIONS [J].
COKELET, GR ;
MEISELMAN, HJ .
SCIENCE, 1968, 162 (3850) :275-+
[9]  
Cooling L, 2014, PATHOBIOLOGY OF HUMAN DISEASE: A DYNAMIC ENCYCLOPEDIA OF DISEASE MECHANISMS, P3049, DOI 10.1016/B978-0-12-386456-7.06202-X
[10]   Comparison of erythrocyte dynamics in shear flow under different stress-free configurations [J].
Cordasco, Daniel ;
Yazdani, Alireza ;
Bagchi, Prosenjit .
PHYSICS OF FLUIDS, 2014, 26 (04)