Enhanced Carbonate Counter Pump and upwelling strengths in the Indian sector of the Southern Ocean during MIS 11

被引:5
作者
Brandon, Margaux [1 ,2 ]
Duchamp-Alphonse, Stephanie [1 ]
Michel, Elisabeth [2 ]
Landais, Amaelle [2 ]
Isguder, Gulay [2 ]
Richard, Patricia [2 ]
Pige, Nicolas [3 ]
Bassinot, Franck [2 ]
Jaccard, Samuel L. [4 ]
Bartolini, Annachiara [5 ]
机构
[1] Univ Paris Saclay, GEOPS, CNRS, F-91405 Orsay, France
[2] Univ Paris Saclay, Lab Sci Climat & Environm, CEA, CNRS,UVSQ, F-91191 Gif Sur Yvette, France
[3] Univ Lyon, LGL TPE, CNRS, UJM,UCBL,ENSL, F-69622 Villeurbanne, France
[4] Univ Lausanne, Inst Earth Sci, CH-1015 Lausanne, Switzerland
[5] Sorbonne Univ, Dept Origines & Evolut, CNRS, CR2P MNHN,Museum Natl Hist Nat, 8 Rue Buffon CP3, F-75005 Paris, France
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Southern Ocean; Marine Isotope Stage 11; Coccolith; Planktonic foraminifera; Geochemistry; Carbonate Counter Pump; Upwelling; Atmospheric CO2 concentration; CALCAREOUS NANNOFOSSIL ASSEMBLAGES; NATURAL IRON FERTILIZATION; ANTARCTIC SEA-ICE; ISOTOPE STAGE 11; ATMOSPHERIC CO2; POLAR FRONT; FORAMINIFERAL CALCIFICATION; CLIMATE VARIABILITY; AUSTRALIAN SECTOR; CALCIUM-CARBONATE;
D O I
10.1016/j.quascirev.2022.107556
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
While numerous studies have highlighted the central role of Southern Ocean (SO) dynamics in modulating rapid increases in atmospheric CO2 concentrations during deglaciations, fewer studies have yet focused on the impact of the Biological Carbon Pump - and more specifically the Carbonate Counter Pump (CCP) - in contributing to increase the CO2 concentration in oceanic surface waters and thus, in the atmosphere. Here, we present micropaleontological (coccolith, planktonic foraminifera) and geochemical (CaCO3, Ca-XRF, delta C-13(N). (pachyderma)) constraints from sediment core MD04-2718 retrieved in the Polar Front Zone of the Indian Ocean covering the time interval spanning Marine Isotope Stage (MIS) 12 to MIS 10 (440,000-360,000 years). We compare our results with published records from the SO to reconstruct past changes in CCP and upwelling dynamics and understand their leverage on the ocean-atmosphere portioning of CO2. We demonstrate that the sharp increase in atmospheric pCO(2) during Termination V was likely associated with enhanced deep-water ventilation in the SO, that promoted the release of previously sequestered CO2 to the ocean surface as the westerly wind belt and the frontal system migrated southwards. Enhanced CCP is observed later, during MIS 11, and is likely the consequence of higher sea surface temperature and higher nutrient availability due to the reinvigoration of SO upwelling leading to increased coccolith (and to a lesser degree, planktonic foraminifera) production and export. The low eccentricity signal recorded during MIS 11 might have additionally strengthened the CCP, exerting a specific control on Gephyrocapsa morphotypes. In addition to the strong global biological productivity and higher carbon storage on land, these synergistic mechanisms may have permitted to shape the distinctive 30 ka-long pCO(2) plateau characteristic of MIS 11. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 126 条
[1]   The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink [J].
Abelmann, Andrea ;
Gersonde, Rainer ;
Knorr, Gregor ;
Zhang, Xu ;
Chapligin, Bernhard ;
Maier, Edith ;
Esper, Oliver ;
Friedrichsen, Hans ;
Lohmann, Gerrit ;
Meyer, Hanno ;
Tiedemann, Ralf .
NATURE COMMUNICATIONS, 2015, 6
[2]   The role of deep ocean circulation in setting glacial climates [J].
Adkins, Jess F. .
PALEOCEANOGRAPHY, 2013, 28 (03) :539-561
[3]   Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric CO2 change [J].
Ai, Xuyuan E. ;
Studer, Anja S. ;
Sigman, Daniel M. ;
Martinez-Garcia, Alfredo ;
Fripiat, Francois ;
Thole, Lena M. ;
Michel, Elisabeth ;
Gottschalk, Julia ;
Arnold, Laura ;
Moretti, Simone ;
Schmitt, Mareike ;
Oleynik, Sergey ;
Jaccard, Samuel L. ;
Haug, Gerald H. .
SCIENCE, 2020, 370 (6522) :1348-+
[4]   A Middle Pleistocene Northeast Atlantic coccolithophore record: Paleoclimatology and paleoproductivity aspects [J].
Amore, F. O. ;
Flores, J. A. ;
Voelker, A. H. L. ;
Lebreiro, S. M. ;
Palumbo, E. ;
Sierro, F. J. .
MARINE MICROPALEONTOLOGY, 2012, 90-91 :44-59
[5]   Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2 [J].
Anderson, R. F. ;
Ali, S. ;
Bradtmiller, L. I. ;
Nielsen, S. H. H. ;
Fleisher, M. Q. ;
Anderson, B. E. ;
Burckle, L. H. .
SCIENCE, 2009, 323 (5920) :1443-1448
[6]   Coccolithophore fluxes in the Norwegian-Greenland Sea: Seasonality and assemblage alterations [J].
Andruleit, H .
MARINE MICROPALEONTOLOGY, 1997, 31 (1-2) :45-64
[7]   Revision of the EPICA Dome C CO2 record from 800 to 600kyr before present [J].
Bereiter, Bernhard ;
Eggleston, Sarah ;
Schmitt, Jochen ;
Nehrbass-Ahles, Christoph ;
Stocker, Thomas F. ;
Fischer, Hubertus ;
Kipfstuhl, Sepp ;
Chappellaz, Jerome .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (02) :542-549
[8]   Basin-wide particulate carbon flux in the Atlantic Ocean:: Regional export patterns and potential for atmospheric CO2 sequestration [J].
Antia, AN ;
Koeve, W ;
Fischer, G ;
Blanz, T ;
Schulz-Bull, D ;
Scholten, J ;
Neuer, S ;
Kremling, K ;
Kuss, J ;
Peinert, R ;
Hebbeln, D ;
Bathmann, U ;
Conte, M ;
Fehner, U ;
Zeitzschel, B .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :845-862
[9]   The contribution of coccolithophores to the optical and inorganic carbon budgets during the Southern Ocean Gas Exchange Experiment: New evidence in support of the "Great Calcite Belt" hypothesis [J].
Balch, W. M. ;
Drapeau, D. T. ;
Bowler, B. C. ;
Lyczskowski, E. ;
Booth, E. S. ;
Alley, D. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
[10]   Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance [J].
Balch, William M. ;
Bates, Nicholas R. ;
Lam, Phoebe J. ;
Twining, Benjamin S. ;
Rosengard, Sarah Z. ;
Bowler, Bruce C. ;
Drapeau, Dave T. ;
Garley, Rebecca ;
Lubelczyk, Laura C. ;
Mitchell, Catherine ;
Rauschenberg, Sara .
GLOBAL BIOGEOCHEMICAL CYCLES, 2016, 30 (08) :1124-1144