Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

被引:170
作者
Pennycook, Timothy J. [1 ,2 ]
Lupini, Andrew R. [3 ]
Yang, Hao [2 ]
Murfitt, Matthew F. [4 ]
Jones, Lewys [2 ]
Nellist, Peter D. [1 ,2 ]
机构
[1] SERC, Daresbury Lab, EPSRC SuperSTEM Facil, Warrington WA4 4AD, Cheshire, England
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA
[4] Nion Co, Kirkland, WA 98033 USA
基金
英国工程与自然科学研究理事会;
关键词
STEM; Pixelated detectors; Ptycography; Phase contrast; Chromatic aberrations; DPC; ABF; INFORMATION LIMIT; MICROSCOPY; ELECTRONS;
D O I
10.1016/j.ultramic.2014.09.013
中图分类号
TH742 [显微镜];
学科分类号
摘要
We demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. Finally, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe. (C) 2014 Elsevier B.V. All rights reserved
引用
收藏
页码:160 / 167
页数:8
相关论文
共 30 条
  • [1] Information multiplexing in ptychography
    Batey, Darren J.
    Claus, Daniel
    Rodenburg, John M.
    [J]. ULTRAMICROSCOPY, 2014, 138 : 13 - 21
  • [2] Coherent X-Ray Imaging of Collagen Fibril Distributions within Intact Tendons
    Berenguer, Felisa
    Bean, Richard J.
    Bozec, Laurent
    Vila-Comamala, Joan
    Zhang, Fucai
    Kewish, Cameron M.
    Bunk, Oliver
    Rodenburg, John M.
    Robinson, Ian K.
    [J]. BIOPHYSICAL JOURNAL, 2014, 106 (02) : 459 - 466
  • [3] DIRECT DETERMINATION OF MAGNETIC DOMAIN-WALL PROFILES BY DIFFERENTIAL PHASE-CONTRAST ELECTRON-MICROSCOPY
    CHAPMAN, JN
    BATSON, PE
    WADDELL, EM
    FERRIER, RP
    [J]. ULTRAMICROSCOPY, 1978, 3 (02) : 203 - 214
  • [4] MODIFIED DIFFERENTIAL PHASE-CONTRAST LORENTZ MICROSCOPY FOR IMPROVED IMAGING OF MAGNETIC-STRUCTURES
    CHAPMAN, JN
    MCFADYEN, IR
    MCVITIE, S
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (05) : 1506 - 1511
  • [5] IMAGE CONTRAST IN A TRANSMISSION SCANNING ELECTRON MICROSCOPE
    COWLEY, JM
    [J]. APPLIED PHYSICS LETTERS, 1969, 15 (02) : 58 - &
  • [6] DEKKERS NH, 1974, OPTIK, V41, P452
  • [7] Dedicated STEM for 200 to 40 keV operation
    Dellby, N.
    Bacon, N. J.
    Hrncirik, P.
    Murfitt, M. F.
    Skone, G. S.
    Szilagyi, Z. S.
    Krivanek, O. L.
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2011, 54 (03)
  • [8] Dynamics of annular bright field imaging in scanning transmission electron microscopy
    Findlay, S. D.
    Shibata, N.
    Sawada, H.
    Okunishi, E.
    Kondo, Y.
    Ikuhara, Y.
    [J]. ULTRAMICROSCOPY, 2010, 110 (07) : 903 - 923
  • [9] Invited Review Article: Methods for imaging weak-phase objects in electron microscopy
    Glaeser, Robert M.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (11)
  • [10] Ptychographic microscope for three-dimensional imaging
    Godden, T. M.
    Suman, R.
    Humphry, M. J.
    Rodenburg, J. M.
    Maiden, A. M.
    [J]. OPTICS EXPRESS, 2014, 22 (10): : 12513 - 12523