Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

被引:220
作者
Madupalli, Honey
Pavan, Barbara
Tecklenburg, Mary M. J. [1 ]
机构
[1] Cent Michigan Univ, Dept Chem & Biochem, Mt Pleasant, MI 48859 USA
基金
美国国家卫生研究院;
关键词
Carbonated apatite; A-type carbonate; B-type carbonate; Microstructural analysis; XRD; Infrared; INFRARED-SPECTRA; HYDROXYAPATITE; FLUORAPATITE; DIFFRACTION; FTIR; ION; ACCOMMODATION; CRYSTALS;
D O I
10.1016/j.jssc.2017.07.025
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR v(3) region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 60 条
[1]   Micro-Raman and FTIR studies of synthetic and natural apatites [J].
Antonakos, Anastasios ;
Liarokapis, Efthymios ;
Leventouri, Theodora .
BIOMATERIALS, 2007, 28 (19) :3043-3054
[2]   Carbonate release from carbonated hydroxyapatite in the wide temperature rage [J].
Barinov, S. M. ;
Rau, J. V. ;
Cesaro, S. Nunziante ;
Durisin, J. ;
Fadeeva, I. V. ;
Ferro, D. ;
Medvecky, L. ;
Trionfetti, G. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2006, 17 (07) :597-604
[3]  
Barroug A, 1994, ADV MAT RES, V1-2, P147, DOI 10.4028/www.scientific.net/AMR.1-2.147
[4]  
BAXTER JD, 1966, YALE J BIOL MED, V38, P456
[5]   Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis [J].
Beasley, Melanie M. ;
Bartelink, Eric J. ;
Taylor, Lacy ;
Miller, Randy M. .
JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2014, 46 :16-22
[6]  
BONEL G, 1972, ANN CHIM FRANCE, V7, P65
[7]   Aging and Bone [J].
Boskey, A. L. ;
Coleman, R. .
JOURNAL OF DENTAL RESEARCH, 2010, 89 (12) :1333-1348
[8]   Osteoporotic fractures: A systematic review of US healthcare costs and resource utilization [J].
Sangeeta Budhia ;
Yeshi Mikyas ;
Michael Tang ;
Enkhe Badamgarav .
PharmacoEconomics, 2012, 30 (2) :147-170
[9]   Ion exchanges in apatites for biomedical application [J].
Cazalbou, S ;
Eichert, D ;
Ranz, X ;
Drouet, C ;
Combes, C ;
Harmand, MF ;
Rey, C .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (05) :405-409
[10]  
Comodi P, 2000, EUR J MINERAL, V12, P965