Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

被引:209
作者
Madupalli, Honey
Pavan, Barbara
Tecklenburg, Mary M. J. [1 ]
机构
[1] Cent Michigan Univ, Dept Chem & Biochem, Mt Pleasant, MI 48859 USA
基金
美国国家卫生研究院;
关键词
Carbonated apatite; A-type carbonate; B-type carbonate; Microstructural analysis; XRD; Infrared; INFRARED-SPECTRA; HYDROXYAPATITE; FLUORAPATITE; DIFFRACTION; FTIR; ION; ACCOMMODATION; CRYSTALS;
D O I
10.1016/j.jssc.2017.07.025
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR v(3) region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 60 条
  • [1] Micro-Raman and FTIR studies of synthetic and natural apatites
    Antonakos, Anastasios
    Liarokapis, Efthymios
    Leventouri, Theodora
    [J]. BIOMATERIALS, 2007, 28 (19) : 3043 - 3054
  • [2] Carbonate release from carbonated hydroxyapatite in the wide temperature rage
    Barinov, S. M.
    Rau, J. V.
    Cesaro, S. Nunziante
    Durisin, J.
    Fadeeva, I. V.
    Ferro, D.
    Medvecky, L.
    Trionfetti, G.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2006, 17 (07) : 597 - 604
  • [3] Barroug A, 1994, ADV MAT RES, V1-2, P147, DOI 10.4028/www.scientific.net/AMR.1-2.147
  • [4] BAXTER JD, 1966, YALE J BIOL MED, V38, P456
  • [5] Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis
    Beasley, Melanie M.
    Bartelink, Eric J.
    Taylor, Lacy
    Miller, Randy M.
    [J]. JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2014, 46 : 16 - 22
  • [6] BONEL G, 1972, ANN CHIM FRANCE, V7, P65
  • [7] Aging and Bone
    Boskey, A. L.
    Coleman, R.
    [J]. JOURNAL OF DENTAL RESEARCH, 2010, 89 (12) : 1333 - 1348
  • [8] Osteoporotic fractures: A systematic review of US healthcare costs and resource utilization
    Sangeeta Budhia
    Yeshi Mikyas
    Michael Tang
    Enkhe Badamgarav
    [J]. PharmacoEconomics, 2012, 30 (2) : 147 - 170
  • [9] Ion exchanges in apatites for biomedical application
    Cazalbou, S
    Eichert, D
    Ranz, X
    Drouet, C
    Combes, C
    Harmand, MF
    Rey, C
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (05) : 405 - 409
  • [10] Comodi P, 2000, EUR J MINERAL, V12, P965