Phase transition in the ABC model

被引:54
作者
Clincy, M
Derrida, B
Evans, MR
机构
[1] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Ecole Normale Super, Lab Phys Stat, F-75231 Paris, France
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 06期
关键词
D O I
10.1103/PhysRevE.67.066115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-beta/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero beta(c). The value of beta(c)=2piroot3 and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions.
引用
收藏
页数:8
相关论文
共 30 条
  • [1] Spontaneous breaking of translational invariance in one-dimensional stationary states on a ring
    Arndt, PF
    Heinzel, T
    Rittenberg, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : L45 - L51
  • [2] LOW AUTOCORRELATION BINARY SEQUENCES - STATISTICAL-MECHANICS AND CONFIGURATION SPACE ANALYSIS
    BERNASCONI, J
    [J]. JOURNAL DE PHYSIQUE, 1987, 48 (04): : 559 - 567
  • [3] BINDER K, 1997, MONTE CARLO SIMULATI
  • [4] AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES
    DERRIDA, B
    DOMANY, E
    MUKAMEL, D
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) : 667 - 687
  • [5] Exact free energy functional for a driven diffusive open stationary nonequilibrium system
    Derrida, B
    Lebowitz, JL
    Speer, ER
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (03) : 306011 - 306014
  • [6] Free energy functional for nonequilibrium systems: An exactly solvable case
    Derrida, B
    Lebowitz, JL
    Speer, ER
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (15) : 150601 - 150601
  • [7] EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION
    DERRIDA, B
    EVANS, MR
    HAKIM, V
    PASQUIER, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07): : 1493 - 1517
  • [8] EXACT SOLUTION OF THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS - SHOCK PROFILES
    DERRIDA, B
    JANOWSKY, SA
    LEBOWITZ, JL
    SPEER, ER
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) : 813 - 842
  • [9] Phase separation in one-dimensional driven diffusive systems
    Evans, MR
    Kafri, Y
    Koduvely, HM
    Mukamel, D
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (03) : 425 - 429
  • [10] Phase separation and coarsening in one-dimensional driven diffusive systems: Local dynamics leading to long-range Hamiltonians
    Evans, MR
    Kafri, Y
    Koduvely, HM
    Mukamel, D
    [J]. PHYSICAL REVIEW E, 1998, 58 (03) : 2764 - 2778