Phase transition in the ABC model

被引:54
作者
Clincy, M
Derrida, B
Evans, MR
机构
[1] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Ecole Normale Super, Lab Phys Stat, F-75231 Paris, France
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 06期
关键词
D O I
10.1103/PhysRevE.67.066115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-beta/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero beta(c). The value of beta(c)=2piroot3 and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Spontaneous breaking of translational invariance in one-dimensional stationary states on a ring [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :L45-L51
[2]   LOW AUTOCORRELATION BINARY SEQUENCES - STATISTICAL-MECHANICS AND CONFIGURATION SPACE ANALYSIS [J].
BERNASCONI, J .
JOURNAL DE PHYSIQUE, 1987, 48 (04) :559-567
[3]  
BINDER K, 1997, MONTE CARLO SIMULATI
[4]   AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
DOMANY, E ;
MUKAMEL, D .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) :667-687
[5]   Exact free energy functional for a driven diffusive open stationary nonequilibrium system [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
PHYSICAL REVIEW LETTERS, 2002, 89 (03) :306011-306014
[6]   Free energy functional for nonequilibrium systems: An exactly solvable case [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
PHYSICAL REVIEW LETTERS, 2001, 87 (15) :150601-150601
[7]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[8]   EXACT SOLUTION OF THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS - SHOCK PROFILES [J].
DERRIDA, B ;
JANOWSKY, SA ;
LEBOWITZ, JL ;
SPEER, ER .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) :813-842
[9]   Phase separation in one-dimensional driven diffusive systems [J].
Evans, MR ;
Kafri, Y ;
Koduvely, HM ;
Mukamel, D .
PHYSICAL REVIEW LETTERS, 1998, 80 (03) :425-429
[10]   Phase separation and coarsening in one-dimensional driven diffusive systems: Local dynamics leading to long-range Hamiltonians [J].
Evans, MR ;
Kafri, Y ;
Koduvely, HM ;
Mukamel, D .
PHYSICAL REVIEW E, 1998, 58 (03) :2764-2778