Voronoi diagrams for convex polygon-offset distance functions

被引:23
作者
Barequet, G [1 ]
Dickerson, MT
Goodrich, MT
机构
[1] Johns Hopkins Univ, Dept Comp Sci, Ctr Geometr Comp, Baltimore, MD 21218 USA
[2] Middlebury Coll, Dept Math & Comp Sci, Middlebury, VT 05753 USA
关键词
D O I
10.1007/s004540010081
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we develop the concept of a convex polygon-offset distance function. Using offset as a notion of distance, we show how to compute the corresponding nearest- and furthest-site Voronoi diagrams of point sites in the plane. We provide near-optimal deterministic O(n(log n + log(2) m) + m)-time algorithms, where n is the number of points and m is the complexity of the underlying polygon, for computing compact representations of both diagrams.
引用
收藏
页码:271 / 291
页数:21
相关论文
共 19 条
[1]  
Aichholzer O., 1996, LECT NOTES COMPUTER, V1090, P117
[2]  
Aichholzer Oswin, 1996, Journal of Universal Computer Science, P752, DOI DOI 10.3217/JUCS-001-12-0752
[3]  
[Anonymous], 1994, COMPUTATIONAL GEOMET
[4]  
[Anonymous], 1985, P 1 ANN S COMP GEOM
[5]   Offset-polygon annulus placement problems [J].
Barequet, G ;
Briggs, AJ ;
Dickerson, MT ;
Goodrich, MT .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 11 (3-4) :125-141
[6]  
CHEW IP, 1985, PCSTR86132 DARTM COL, P235
[7]  
Creveling CM., 1997, Tolerance design: a handbook for developing optimal specifications
[8]  
Dugundji J., 1970, TOPOLOGY
[9]   A SWEEPLINE ALGORITHM FOR VORONOI DIAGRAMS [J].
FORTUNE, S .
ALGORITHMICA, 1987, 2 (02) :153-174
[10]  
Kelley J. L., 1976, LINEAR TOPOLOGICAL S