Effects of soiling on photovoltaic (PV) modules in the Atacama Desert

被引:112
作者
Cordero, R. R. [1 ]
Damiani, A. [1 ,2 ]
Laroze, D. [3 ]
MacDonell, S. [4 ]
Jorquera, J. [1 ]
Sepulveda, E. [1 ]
Feron, S. [1 ]
Llanillo, P. [1 ]
Labbe, F. [5 ]
Carrasco, J. [6 ]
Ferrer, J. [1 ]
Torres, G. [7 ]
机构
[1] Univ Santiago Chile, Ave Bernardo OHiggins 3363, Santiago, Chile
[2] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan
[3] Univ Tarapaca, CEDENA, Inst Alta Invest, Casilla 7D, Arica, Chile
[4] CEAZA, Raul Bitran 1305, La Serena, Chile
[5] Univ Tecn Feder Santa Maria, Ave Espana 1680, Valparaiso, Chile
[6] Univ Magallanes, Ave Bulnes 1855, Punta Arenas, Chile
[7] Direcc Meteorol Chile, Ave Portales 3450, Santiago, Chile
关键词
DEPOSITION VELOCITY; DUST; SYSTEMS; NETWORK; AERONET; IMPACT; LOSSES; PLANTS; PM2.5; AOD;
D O I
10.1038/s41598-018-32291-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soiling by dry deposition affects the power output of photovoltaic (PV) modules, especially under dry and arid conditions that favor natural atmospheric aerosols (wind-blown dust). In this paper, we report on measurements of the soiling effect on the energy yield of grid-connected crystalline silicon PV modules deployed in five cities across a north-south transect of approximately 1300 km in the Atacama Desert ranging from latitude 18 degrees S to latitude 30 degrees S. Energy losses were assessed by comparing side by- side outputs of four co-planar PV modules. Two of the PV modules of the array were kept clean as a control, while we allowed the other two to naturally accumulate soiling for 12 months (from January 2017 to January 2018). We found that the combination of high deposition rates and infrequent rainfalls led to annual energy losses that peaked at 39% in the northern coastal part of the desert. In contrast, annual energy losses of 3% or less were measured at relatively high-altitude sites and also at locations in the southern part of the desert. For comparison, soiling-induced annual energy losses of about 7% were measured in Santiago, Chile (33 degrees S), a major city with higher rainfall frequency but where urban pollution plays a significant role.
引用
收藏
页数:14
相关论文
共 53 条
[1]   Performance evaluation of photovoltaic systems on Kuwaiti schools' rooftop [J].
Al-Otaibi, A. ;
Al-Qattan, A. ;
Fairouz, F. ;
Al-Mulla, A. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 95 :110-119
[2]  
[Anonymous], J GEOPHYS RES ATMOS
[3]  
[Anonymous], 2014, TRMM VERSION 7 3B42
[4]   Effect of soiling on photovoltaic modules [J].
Appels, Reinhart ;
Lefevre, Buvaneshwari ;
Herteleer, Bert ;
Goverde, Hans ;
Beerten, Alexander ;
Paesen, Robin ;
De Medts, Klaas ;
Driesen, Johan ;
Poortmans, Jef .
SOLAR ENERGY, 2013, 96 :283-291
[5]   Estimates of aerosol radiative forcing from the MACC re-analysis [J].
Bellouin, N. ;
Quaas, J. ;
Morcrette, J. -J. ;
Boucher, O. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (04) :2045-2062
[6]   Impact of the mixing boundary layer on the relationship between PM2.5 and aerosol optical thickness [J].
Boyouk, Neda ;
Leon, Jean-Francois ;
Delbarre, Herve ;
Podvin, T. ;
Deroo, C. .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (02) :271-277
[7]  
Catelani M, 2012, IEEE IMTC P
[8]   Dry deposition velocity of total suspended particles and meteorological influence in four locations in Guangzhou, China [J].
Chen, Leifu ;
Peng, Shaolin ;
Liu, Jingang ;
Hou, Qianqian .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2012, 24 (04) :632-639
[9]   Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model [J].
Chin, Mian ;
Diehl, T. ;
Tan, Q. ;
Prospero, J. M. ;
Kahn, R. A. ;
Remer, L. A. ;
Yu, H. ;
Sayer, A. M. ;
Bian, H. ;
Geogdzhayev, I. V. ;
Holben, B. N. ;
Howell, S. G. ;
Huebert, B. J. ;
Hsu, N. C. ;
Kim, D. ;
Kucsera, T. L. ;
Levy, R. C. ;
Mishchenko, M. I. ;
Pan, X. ;
Quinn, P. K. ;
Schuster, G. L. ;
Streets, D. G. ;
Strode, S. A. ;
Torres, O. ;
Zhao, X. -P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (07) :3657-3690
[10]  
CNE Comision Nacional de Energia, 2018, REP SECT EN DIC