γ-Radiolysis of Room-Temperature Ionic Liquids: An EPR Spin-Trapping Study
被引:6
作者:
Tarabek, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA
Water Res Inst, Nabr Arm Gen L Svobodu 5, Bratislava 81249, SlovakiaUniv Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA
Tarabek, Peter
[1
,2
]
Lisovskaya, Alexandra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USAUniv Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA
Lisovskaya, Alexandra
[1
]
Bartels, David M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USAUniv Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA
Bartels, David M.
[1
]
机构:
[1] Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA
[2] Water Res Inst, Nabr Arm Gen L Svobodu 5, Bratislava 81249, Slovakia
The radiolytic stability of a series of room-temperature ionic liquids (ILs) composed of bis(trifluoromethylsulfonyl)imide anion (Tf2N-) and triethylammonium, 1-butyl-1-methylpyrrolidinium, trihexyl(tetradecyl)phosphonium, 1-bexyl-3-methylpyridinium, and 1-hexyl-3-methylimidazolium (hmim) cations was studied using spin-trap electron paramagnetic resonance (EPR) spectroscopy with a spin-trap alpha-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN). The trapped radical yields were measured as a function of POBN concentration and as a function of radiation dose by double integration of the broad unresolved lines. Well-resolved motionally narrowed EPR spectra for the trapped radicals were obtained by dilution of the ILs with CH2Cl2 after irradiation. The trapped radicals were identified as mainly carbon-centered alkyl and (CF3)-C-center dot, and their ratio varies greatly across the series of ILs. Expected nitrogen-centered radicals derived from Tf2N- were not observed. The hmim liquid proved most interesting because a large part of the trapped radical yield (entirely carbon-centered) grew in over several hours after irradiation. We also discovered a complicated narrow-line stable radical signal in this neat IL with no spin trap added, which grows in over several hours after irradiation and decays over several weeks.