ON SOME RESONANT BOUNDARY VALUE PROBLEM ON AN INFINITE INTERVAL

被引:0
作者
Szymanska-Debowska, Katarzyna [1 ]
机构
[1] Tech Univ Lodz, Inst Math, PL-90924 Lodz, Poland
关键词
Nonlinear; asymptotic bondary valud problem; resonant problem; set-valued maps; decomposable maps; R(delta)-sets;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of at least one solution to a nonlinear second order differential equation on the half-line with the boundary conditions x'(0) = 0 and with the first derivative vanishing at infinity is proved.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条
[31]   A free boundary problem for the p-Laplacian with nonlinear boundary conditions [J].
Acampora, P. ;
Cristoforoni, E. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) :1-20
[32]   A free boundary problem for the p-Laplacian with nonlinear boundary conditions [J].
P. Acampora ;
E. Cristoforoni .
Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 :1-20
[33]   Research on influence of accuracy of observation data on construction ultrahigh degree gravity field model based on Stokes boundary value problem [J].
Liang L. ;
Yu J. ;
Zhong M. ;
Wang C. .
Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (03) :78-84
[34]   Analyticity of solutions of analytic non-linear general elliptic boundary value problems, and some results about linear problems [J].
Wang R. .
Frontiers of Mathematics in China, 2006, 1 (3) :382-429
[35]   A class of new nonlinear dynamic integral inequalities containing integration on infinite interval on time scales [J].
Liu, Haidong ;
Li, Cuiyuan ;
Shen, Feichao .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[36]   A class of new nonlinear dynamic integral inequalities containing integration on infinite interval on time scales [J].
Haidong Liu ;
Cuiyuan Li ;
Feichao Shen .
Advances in Difference Equations, 2019
[37]   UNIQUENESS OF POSITIVE AND COMPACTON-TYPE SOLUTIONS FOR A RESONANT QUASILINEAR PROBLEM [J].
Anello, Giovanni ;
Vilasi, Luca .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (02) :565-575
[38]   BOUNDARY VALUE PROBLEMS OF A CLASS OF NONLINEAR DIFFERENCE EQUATIONS [J].
Yang, Lianwu ;
Xiao, Shixiao ;
Wei, Huan ;
Shi, Haiping .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04) :91-98
[39]   Non-negative solutions and strong maximum principle for a resonant quasilinear problem [J].
Anello, Giovanni ;
Cammaroto, Filippo ;
Vilasi, Luca .
REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (03) :801-818
[40]   A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with boundary perturbation [J].
Mo J. .
Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (2) :201-206