Quantum-Dot Based Vertical External-Cavity Surface-Emitting Lasers With High Efficiency

被引:2
作者
Finke, Tanja [1 ]
Sichkovskyi, Vitalii [1 ]
Reithmaier, Johann Peter [1 ]
机构
[1] Univ Kassel, Ctr Interdisciplinary Nanostruct Sci & Technol CI, Inst Nanostruct Technol & Analyt INA, Dept Technol Phys, D-34132 Kassel, Germany
关键词
Temperature measurement; Heat sinks; Annealing; Quantum dot lasers; Distributed Bragg reflectors; Vertical cavity surface emitting lasers; Pump lasers; Continuous wave; quantum dots; semiconductor disk lasers; vertical-external cavity surface emitting lasers; HIGH-POWER; SATURABLE ABSORBER; OUTPUT POWER; SEMICONDUCTOR; FEMTOSECOND; WAVELENGTH;
D O I
10.1109/LPT.2021.3089331
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate an optically pumped vertical external-cavity surface-emitting laser (VECSEL) based on quantum dots (QDs) with a high optical gain. The photoluminescence (PL) emission of the QDs at the operating wavelength of 1030 nm has been optimized towards a high integrated intensity by using a dot density in the range of 10(11) cm(-2) and a narrow PL linewidth of around 30 meV due to an improved size homogeneity. Additionally, post-growth rapid thermal annealing at 650 degrees C for 45 s was found to reduce the non-radiative recombination centers and further improve the output power efficiency. During this study, the number of QD layers, the heat sink temperature and the heat spreader material were analyzed. The best results with a record slope-efficiency of 35% and a maximum continuous-wave output power of 5.7 W could be achieved with an RTA treated QD based VECSEL containing 24 QD layers in the gain section. The laser was processed with a solder-based flip-chip bonding technique on a diamond heat sink and temperature stabilized at 4 degrees C. Furthermore, an excellent symmetric beam profile with M-2 = 1.12 was achieved.
引用
收藏
页码:719 / 722
页数:4
相关论文
共 26 条
[1]   High-Power Quantum-Dot Vertical-External-Cavity Surface-Emitting Laser Exceeding 8 W [J].
Al Nakdali, Dalia ;
Shakfa, Mohammad Khaled ;
Gaafar, Mahmoud ;
Butkus, Mantas ;
Fedorova, Ksenia A. ;
Zulonas, Modestas ;
Wichmann, Matthias ;
Zhang, Fan ;
Heinen, Bernd ;
Rahimi-Iman, Arash ;
Stolz, Wolfgang ;
Rafailov, Edik U. ;
Koch, Martin .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26 (15) :1561-1564
[2]   Mode-locking Instabilities for High-Gain Semiconductor Disk Lasers Based on Active Submonolayer Quantum Dots [J].
Alfieri, C. G. E. ;
Waldburger, D. ;
Nuernberg, J. ;
Golling, M. ;
Jaurigue, L. ;
Luedge, K. ;
Keller, U. .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[3]   High-Power Sub-300-Femtosecond Quantum Dot Semiconductor Disk Lasers [J].
Alfieri, Cesare G. E. ;
Waldburger, Dominik ;
Golling, Matthias ;
Keller, Ursula .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (06) :525-528
[4]   High brightness GaInAs/(Al)GaAs quantum-dot tapered lasers at 980 nm with high wavelength stability [J].
Auzanneau, SC ;
Calligaro, M ;
Krakowski, M ;
Klopf, F ;
Deubert, S ;
Reithmaier, JP ;
Forchel, A .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2238-2240
[5]   InGaAs-GaAs quantum-dot lasers [J].
Bimberg, D ;
Kirstaedter, N ;
Ledentsov, NN ;
Alferov, ZI ;
Kopev, PS ;
Ustinov, VM .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) :196-205
[6]   Quantum Dot Based Semiconductor Disk Lasers for 1-1.3 μm [J].
Butkus, Mantas ;
Rautiainen, Jussi ;
Okhotnikov, Oleg G. ;
Hamilton, Craig J. ;
Malcolm, G. P. A. ;
Mikhrin, S. S. ;
Krestnikov, Igor L. ;
Livshits, D. A. ;
Rafailov, Edik U. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (06) :1763-1771
[7]   Group-III vacancy induced InxGa1-xAs quantum dot interdiffusion [J].
Djie, HS ;
Gunawan, O ;
Wang, DN ;
Ooi, BS ;
Hwang, JCM .
PHYSICAL REVIEW B, 2006, 73 (15)
[8]   Temperature resistant fast InxGa1-xAs/GaAs quantum dot saturable absorber for the epitaxial integration into semiconductor surface emitting lasers [J].
Finke, T. ;
Nuernberg, J. ;
Sichkovskyi, V ;
Golling, M. ;
Keller, U. ;
Reithmaier, J. P. .
OPTICS EXPRESS, 2020, 28 (14) :20954-20966
[9]   Optimization of size uniformity and dot density of InxGa1-xAs/GaAs quantum dots for laser applications in 1 μm wavelength range [J].
Finke, Tanja ;
Sichkovskyi, Vitalii ;
Reithmaier, Johann Peter .
JOURNAL OF CRYSTAL GROWTH, 2019, 517 :1-6
[10]   Suppression of interdiffusion in GaAs/AlGaAs quantum-well structure capped with dielectric films by deposition of gallium oxide [J].
Fu, L ;
Wong-Leung, J ;
Deenapanray, PNK ;
Tan, HH ;
Jagadish, C ;
Gong, B ;
Lamb, RN ;
Cohen, RM ;
Reichert, W ;
Dao, LV ;
Gal, M .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (07) :3579-3583