Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging

被引:17
作者
Akbari, Hamed [1 ,2 ]
Kazerooni, Anahita Fathi [1 ,2 ]
Ware, Jeffrey B. [1 ]
Mamourian, Elizabeth [1 ,2 ]
Anderson, Hannah [1 ]
Guiry, Samantha [1 ]
Sako, Chiharu [1 ,2 ]
Raymond, Catalina [3 ,4 ]
Yao, Jingwen [3 ,4 ]
Brem, Steven [5 ]
O'Rourke, Donald M. [5 ]
Desai, Arati S. [6 ]
Bagley, Stephen J. [6 ]
Ellingson, Benjamin M. [3 ,4 ]
Davatzikos, Christos [1 ,2 ]
Nabavizadeh, Ali [1 ]
机构
[1] Univ Penn, Hosp Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Ctr Biomed Image Comp & Analyt, Philadelphia, PA 19104 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, UCLA Brain Tumor Imaging Lab, Ctr Comp Vis & Imaging Biomarkers, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[5] Univ Penn, Perelman Sch Med, Dept Neurosurg, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Div Hematol Oncol, Dept Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
PATTERN-ANALYSIS; PH; GLIOMA; METALLOPROTEINASES; INFILTRATION; COLLAGENASE; DEPENDENCE; HYPOXIA;
D O I
10.1038/s41598-021-94560-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naive and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry (MTRasym) at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity (namely, edema, ED) were used to extract principal components (PCs) and to build support vector machines regression (SVR) models to predict MTRasym values using PCs. Our predicted map correlated with MTRasym values with Spearman's r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, respectively (p<0.006). The results of this study demonstrates that PCA analysis of DSC imaging data can provide information about tumor pH in GBM patients, with the strongest association within the peritumoral regions.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma [J].
Akbari, Hamed ;
Rathore, Saima ;
Bakas, Spyridon ;
Nasrallah, MacLean P. ;
Shukla, Gaurav ;
Mamourian, Elizabeth ;
Rozycki, Martin ;
Bagley, Stephen J. ;
Rudie, Jeffrey D. ;
Flanders, Adam E. ;
Dicker, Adam P. ;
Desai, Arati S. ;
O'Rourke, Donald M. ;
Brem, Steven ;
Lustig, Robert ;
Mohan, Suyash ;
Wolf, Ronald L. ;
Bilello, Michel ;
Martinez-Lage, Maria ;
Davatzikos, Christos .
CANCER, 2020, 126 (11) :2625-2636
[2]   Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Bilello, Michel ;
Wolf, Ronald L. ;
Martinez-Lage, Maria ;
Biros, George ;
Alonso-Basanta, Michelle ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEUROSURGERY, 2016, 78 (04) :572-580
[3]   Pattern Analysis of Dynamic Susceptibility Contrast-enhanced MR Imaging Demonstrates Peritumoral Tissue Heterogeneity [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Wolf, Ronald L. ;
Bilello, Michel ;
Verma, Ragini ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
RADIOLOGY, 2014, 273 (02) :502-510
[4]   In Vivo Detection of EGFRvIII in Glioblastoma via Perfusion Magnetic Resonance Imaging Signature Consistent with Deep Peritumoral Infiltration: The φ-Index [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Pisapia, Jared ;
Martinez-Lage, Maria ;
Rozycki, Martin ;
Rathore, Saima ;
Dahmane, Nadia ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
CLINICAL CANCER RESEARCH, 2017, 23 (16) :4724-4734
[5]   Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas [J].
Boxerman, Jerrold L. ;
Quarles, Chad C. ;
Hu, Leland S. ;
Erickson, Bradley J. ;
Gerstner, Elizabeth R. ;
Smits, Marion ;
Kaufmann, Timothy J. ;
Barboriak, Daniel P. ;
Huang, Raymond H. ;
Wick, Wolfgang ;
Weller, Michael ;
Galanis, Evanthia ;
Kalpathy-Cramer, Jayashree ;
Shankar, Lalitha ;
Jacobs, Paula ;
Chung, Caroline ;
van den Bent, Martin J. ;
Chang, Susan ;
Al Yung, W. K. ;
Cloughesy, Timothy F. ;
Wen, Patrick Y. ;
Gilbert, Mark R. ;
Rosen, Bruce R. ;
Ellingson, Benjamin M. ;
Schmainda, Kathleen M. .
NEURO-ONCOLOGY, 2020, 22 (09) :1262-1275
[6]   Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population [J].
Brat, DJ ;
Castellano-Sanchez, AA ;
Hunter, SB ;
Pecot, M ;
Cohen, C ;
Hammond, EH ;
Devi, SN ;
Kaur, B ;
Van Meir, EG .
CANCER RESEARCH, 2004, 64 (03) :920-927
[7]   Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma [J].
Brat, DJ ;
Van Meir, EG .
LABORATORY INVESTIGATION, 2004, 84 (04) :397-405
[8]   PH Measurements of the Brain Using Phosphorus Magnetic Resonance Spectroscopy ((PMRS)-P-31) in Healthy Men - Comparison of Two Analysis Methods [J].
Cichocka, Monika ;
Kozub, Justyna ;
Urbanik, Andrzej .
POLISH JOURNAL OF RADIOLOGY, 2015, 80 :509-514
[9]   The Tumor Microenvironment Strongly Impacts Master Transcriptional Regulators and Gene Expression Class of Glioblastoma [J].
Cooper, Lee A. D. ;
Gutman, David A. ;
Chisolm, Candace ;
Appin, Christina ;
Kong, Jun ;
Rong, Yuan ;
Kurc, Tahsin ;
Van Meir, Erwin G. ;
Saltz, Joel H. ;
Moreno, Carlos S. ;
Brat, Daniel J. .
AMERICAN JOURNAL OF PATHOLOGY, 2012, 180 (05) :2108-2119
[10]   Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome [J].
Davatzikos, Christos ;
Rathore, Saima ;
Bakas, Spyridon ;
Pati, Sarthak ;
Bergman, Mark ;
Kalarot, Ratheesh ;
Sridharan, Patmaa ;
Gastounioti, Aimilia ;
Jahani, Nariman ;
Cohen, Eric ;
Akbari, Hamed ;
Tunc, Birkan ;
Doshi, Jimit ;
Parker, Drew ;
Hsieh, Michael ;
Sotiras, Aristeidis ;
Li, Hongming ;
Ou, Yangming ;
Doot, Robert K. ;
Bilello, Michel ;
Fan, Yong ;
Shinohara, Russell T. ;
Yushkevich, Paul ;
Verma, Ragini ;
Kontos, Despina .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (01)