State-space models for count time series with excess zeros

被引:22
|
作者
Yang, Ming [1 ]
Cavanaugh, Joseph E. [2 ]
Zamba, Gideon K. D. [2 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Univ Iowa, Coll Publ Hlth, Dept Biostat, Iowa City, IA 52242 USA
关键词
autocorrelation; interrupted time series; intervention analysis; overdispersion; particle methods; state-space models; zero-inflation; INFLATED POISSON REGRESSION; LIKELIHOOD;
D O I
10.1177/1471082X14535530
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Count time series are frequently encountered in biomedical, epidemiological and public health applications. In principle, such series may exhibit three distinctive features: overdispersion, zero-inflation and temporal correlation. Developing a modelling framework that is sufficiently general to accommodate all three of these characteristics poses a challenge. To address this challenge, we propose a flexible class of dynamic models in the state-space framework. Certain models that have been previously introduced in the literature may be viewed as special cases of this model class. For parameter estimation, we devise a Monte Carlo Expectation-Maximization (MCEM) algorithm, where particle filtering and particle smoothing methods are employed to approximate the high-dimensional integrals in the E-step of the algorithm. To illustrate the proposed methodology, we consider an application based on the evaluation of a participatory ergonomics intervention, which is designed to reduce the incidence of workplace injuries among a group of hospital cleaners. The data consists of aggregated monthly counts of work-related injuries that were reported before and after the intervention.
引用
收藏
页码:70 / 90
页数:21
相关论文
共 50 条
  • [41] Monte Carlo approximations for general state-space models
    Hurzeler, M
    Kunsch, HR
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (02) : 175 - 193
  • [42] Approximate Gaussian variance inference for state-space models
    Deka, Bhargob
    Goulet, James-A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (11) : 2934 - 2962
  • [43] Improving Linear State-Space Models with Additional NIterations
    Gumussoy, Suat
    Ozdemir, Ahmet Arda
    McKelvey, Tomas
    Ljung, Lennart
    Gibanica, Mladen
    Singh, Rajiv
    IFAC PAPERSONLINE, 2018, 51 (15): : 341 - 346
  • [44] State-space models for the dynamics of wild animal populations
    Buckland, ST
    Newman, KB
    Thomas, L
    Koesters, NB
    ECOLOGICAL MODELLING, 2004, 171 (1-2) : 157 - 175
  • [45] DIFFUSION ESTIMATION OF STATE-SPACE MODELS: BAYESIAN FORMULATION
    Dedecius, Kamil
    2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [46] Biased Online Parameter Inference for State-Space Models
    Pierre Del Moral
    Ajay Jasra
    Yan Zhou
    Methodology and Computing in Applied Probability, 2017, 19 : 727 - 749
  • [47] Modeling time series of count with excess zeros and ones based on INAR(1) model with zero-and-one inflated Poisson innovations
    Qi, Xiaohong
    Li, Qi
    Zhu, Fukang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 : 572 - 590
  • [48] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [49] Estimation methods for nonlinear state-space models in ecology
    Pedersen, M. W.
    Berg, C. W.
    Thygesen, U. H.
    Nielsen, A.
    Madsen, H.
    ECOLOGICAL MODELLING, 2011, 222 (08) : 1394 - 1400
  • [50] A Bayesian state-space formulation of dynamic occupancy models
    Royle, J. Andrew
    Kery, Marc
    ECOLOGY, 2007, 88 (07) : 1813 - 1823