IP*-sets in function field and mixing properties

被引:0
作者
De, Dibyendu [1 ]
Debnath, Pintu [2 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, W Bengal, India
[2] Bashirhat Coll, Dept Math, Basirhat, W Bengal, India
关键词
IP*-set; Central*-set; Delta-set; Strong mixing; Finite field; MULTIPLE RECURRENCE; THEOREM;
D O I
10.1016/j.topol.2017.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ring of polynomial over a finite field F-q[x] has received much attention, both from a combinatorial viewpoint as in regards to its action on measurable dynamical systems. In the case of (Z, +) we know that the ideal generated by any nonzero element is an IP*-set. In the present article we first establish that the analogous result is true for F-q[x]. We further use this result to establish some mixing properties of the action of (F-q[x],+) We shall also discuss on Khintchine's recurrence for the action of (F-q[x] \ {0},.). (c) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:294 / 302
页数:9
相关论文
共 11 条
  • [1] Multiple recurrence and nilsequences
    Bergelson, V
    Host, B
    Kra, B
    Ruzsa, I
    [J]. INVENTIONES MATHEMATICAE, 2005, 160 (02) : 261 - 303
  • [2] Iterated spectra of numbers - Elementary, dynamical, and algebraic approaches
    Bergelson, V
    Hindman, N
    Kra, B
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (03) : 893 - 912
  • [3] ON IP-ASTERISK SETS AND CENTRAL SETS
    BERGELSON, V
    HINDMAN, N
    [J]. COMBINATORICA, 1994, 14 (03) : 269 - 277
  • [4] Bergelson V., ARXIV161009771V1
  • [5] Bergelson V., 2008, Colloq. Math, V110, P117
  • [6] Bergelson V, 2015, J ANAL MATH, V127, P329, DOI 10.1007/s11854-015-0033-1
  • [7] A new and stronger central sets theorem
    De, Dibyendu
    Hindman, Neil
    Strauss, Dona
    [J]. FUNDAMENTA MATHEMATICAE, 2008, 199 (02) : 155 - 175
  • [8] Furstenberg H., 1981, Recurrence in Ergodic Theory and Combinatorial Number Theory
  • [9] Kuang R., 2008, Colloq. Math, V110, P151
  • [10] Green-Tao theorem in function fields
    Thai Hoang Le
    [J]. ACTA ARITHMETICA, 2011, 147 (02) : 129 - 152