A family of Crouzeix-Raviart finite elements in 3D

被引:10
作者
Ciarlet, Patrick, Jr. [1 ]
Dunkl, Charles F. [2 ]
Sauter, Stefan A. [3 ]
机构
[1] Univ Paris Saclay, INRIA, CNRS, POEMS,ENSTA ParisTech, 828 Bd Marechaux, F-91762 Palaiseau, France
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
Finite element; non-conforming; Crouzeix-Raviart; orthogonal polynomials on triangles; symmetric orthogonal polynomials; ORTHOGONAL POLYNOMIALS; REGULARITY;
D O I
10.1142/S0219530518500070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will develop a family of non-conforming "Crouzeix-Raviart" type finite elements in three dimensions. They consist of local polynomials of maximal degree p is an element of N on simplicial finite element meshes while certain jump conditions are imposed across adjacent simplices. We will prove optimal a priori estimates for these finite elements. The characterization of this space via jump conditions is implicit and the derivation of a local basis requires some deeper theoretical tools from orthogonal polynomials on triangles and their representation. We will derive these tools for this purpose. These results allow us to give explicit representations of the local basis functions. Finally, we will analyze the linear independence of these sets of functions and discuss the question whether they span the whole non-conforming space.
引用
收藏
页码:649 / 691
页数:43
相关论文
共 21 条
[1]  
[Anonymous], 2008, The Mathematical Theory of Finite Element Methods
[2]   Gauss-Legendre elements: a stable, higher order non-conforming finite element family [J].
Baran, A. ;
Stoyan, G. .
COMPUTING, 2007, 79 (01) :1-21
[3]  
Boffi D., 2013, MIXED FINITE ELEMENT, V44
[4]   Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains [J].
Bonito, Andrea ;
Guermond, Jean-Luc ;
Luddens, Francky .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) :498-512
[5]   Poincare-Friedrichs inequalities for piecewise H1 functions [J].
Brenner, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :306-324
[6]   Forty Years of the Crouzeix-Raviart Element [J].
Brenner, Susanne C. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (02) :367-396
[7]  
Ciarlet P., 2002, Classics in Appl. Math., V40
[8]   Intrinsic finite element methods for the computation of fluxes for Poisson's equation [J].
Ciarlet, P. G. ;
Ciarlet, P., Jr. ;
Sauter, S. A. ;
Simian, C. .
NUMERISCHE MATHEMATIK, 2016, 132 (03) :433-462
[9]   Domain decomposition methods for the diffusion equation with low-regularity solution [J].
Ciarlet, P., Jr. ;
Jamelot, E. ;
Kpadonou, F. D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) :2369-2384
[10]  
Costabel M, 1999, RAIRO-MATH MODEL NUM, V33, P627