Radiomics in cervical cancer: Current applications and future potential

被引:40
作者
Ai, Yao [1 ]
Zhu, Haiyan [2 ]
Xie, Congying [1 ]
Jin, Xiance [1 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 1, Dept Radiat & Med Oncol, Wenzhou, Peoples R China
[2] Wenzhou Med Univ, Affiliated Hosp 1, Dept Gynaecol, Wenzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiomics; Cervical cancer; Prediction; Tumor staging; Recurrence; Survival; POSITRON-EMISSION-TOMOGRAPHY; F-18-FDG PET; TEXTURAL FEATURES; FDG-PET; TUMOR HETEROGENEITY; PROGNOSTIC-FACTORS; RADIATION-THERAPY; ONCOLOGY-GROUP; LYMPHATIC METASTASIS; UTERINE CERVIX;
D O I
10.1016/j.critrevonc.2020.102985
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cervical cancer is the most commonly diagnosed cancer among women. Early diagnosis and prediction will greatly improve the treatment outcome. Many clinical parameters have been used as diagnostic and prognostic factors for cervical cancer patients, including tumor stage, histological type, lymph node status, but with limitations in prediction accuracy. The development of noninvasive biomarker with the potential to provide more specific tumor characterization before treatment begins or during therapy is urgent needed, which may permit clinicians to administer a more individualized anti-cancer treatment. Radiomics is a mathematical-statistical procedure extracting information from medial images, which has the potential for prediction of staging, histological type, node status, relapse and survival in patients with cervical cancer. In this manuscript, we reviewed recent clinical studies and future potential for the application of radiomics in the treatment of patients with cervical cancer, and discussed the current challenges and limitations of radiomics for oncology.
引用
收藏
页数:7
相关论文
共 97 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Investigating multi-radiomic models for enhancing prediction power of cervical cancer treatment outcomes [J].
Altazi, Baderaldeen A. ;
Fernandez, Daniel C. ;
Zhang, Geoffrey G. ;
Hawkins, Samuel ;
Naqvi, Syeda M. ;
Kim, Youngchul ;
Hunt, Dylan ;
Latifi, Kujtim ;
Biagioli, Matthew ;
Venkata, Puja ;
Moros, Eduardo G. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2018, 46 :180-188
[3]   Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms [J].
Altazi, Baderaldeen A. ;
Zhang, Geoffrey G. ;
Fernandez, Daniel C. ;
Montejo, Michael E. ;
Hunt, Dylan ;
Werner, Joan ;
Biagioli, Matthew C. ;
Moros, Eduardo G. .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2017, 18 (06) :32-48
[4]   Can diffusion-weighted magnetic resonance imaging predict tumor recurrence of uterine cervical cancer after concurrent chemoradiotherapy? [J].
Bae, Jung Min ;
Kim, Chan Kyo ;
Park, Jung Jae ;
Park, Byung Kwan .
ABDOMINAL RADIOLOGY, 2016, 41 (08) :1604-1610
[5]   Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology [J].
Balleyguier, Corinne ;
Sala, E. ;
Da Cunha, T. ;
Bergman, A. ;
Brkljacic, B. ;
Danza, F. ;
Forstner, R. ;
Hamm, B. ;
Kubik-Huch, R. ;
Lopez, C. ;
Manfredi, R. ;
McHugo, J. ;
Oleaga, L. ;
Togashi, K. ;
Kinkel, K. .
EUROPEAN RADIOLOGY, 2011, 21 (05) :1102-1110
[6]   Functional Imaging to Predict Tumor Response in Locally Advanced Cervical Cancer [J].
Barwick, Tara D. ;
Taylor, Alexandra ;
Rockall, Andrea .
CURRENT ONCOLOGY REPORTS, 2013, 15 (06) :549-558
[7]  
Becker AS, 2017, ACTA RADIOL OPEN, V6, DOI 10.1177/2058460117729574
[8]   Prognostic Model for Survival in Patients With Early Stage Cervical Cancer [J].
Biewenga, Petra ;
van der Velden, Jacobus ;
Mol, Ben Willem J. ;
Stalpers, Lukas J. A. ;
Schilthuis, Marten S. ;
van der Steeg, Jan Willem ;
Burger, Matthe P. M. ;
Buist, Marrije R. .
CANCER, 2011, 117 (04) :768-776
[9]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[10]   Tumor radiomic heterogeneity: Multiparametric functional imaging to characterize variability and predict response following cervical cancer radiation therapy [J].
Bowen, Stephen R. ;
Yuh, William T. C. ;
Hippe, Daniel S. ;
Wu, Wei ;
Partridge, Savannah C. ;
Elias, Saba ;
Jia, Guang ;
Huang, Zhibin ;
Sandison, George A. ;
Nelson, Dennis ;
Knopp, Michael V. ;
Lo, Simon S. ;
Kinahan, Paul E. ;
Mayr, Nina A. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (05) :1388-1396