Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites

被引:218
作者
Kamal, Musa R. [1 ]
Khoshkava, Vahid [1 ]
机构
[1] McGill Univ, Dept Chem Engn, Montreal, PQ H3A 2B2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cellulose nanocrystals (CNC); Rheological percolation; Melt dispersion; Polymer nanocomposites; Nucleating agent; van der Waals interactions; DISPERSION; KINETICS; SUSPENSIONS; EXTRUSION; FLOW;
D O I
10.1016/j.carbpol.2015.01.012
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 44 条
[1]   Effect of trace electrolyte on liquid crystal type of cellulose microcrystals [J].
Araki, J ;
Kuga, S .
LANGMUIR, 2001, 17 (15) :4493-4496
[2]   Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose [J].
Araki, J ;
Wada, M ;
Kuga, S ;
Okano, T .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1998, 142 (01) :75-82
[3]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[4]  
Battacharya S. N., 2007, POLYM NANOCOMPOSITES
[5]   Rheological behavior of controlled-rheology polypropylenes obtained by peroxide-promoted degradation during extrusion: Comparison between homopolymer and copolymer [J].
Berzin, F ;
Vergnes, B ;
Delamare, L .
JOURNAL OF APPLIED POLYMER SCIENCE, 2001, 80 (08) :1243-1252
[6]   Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation [J].
Bitinis, Natacha ;
Fortunati, Elena ;
Verdejo, Raquel ;
Bras, Julien ;
Maria Kenny, Jose ;
Torre, Luigi ;
Angel Lopez-Manchado, Miguel .
CARBOHYDRATE POLYMERS, 2013, 96 (02) :621-627
[7]   Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology [J].
Bitinis, Natacha ;
Verdejo, Raquel ;
Bras, Julien ;
Fortunati, Elena ;
Maria Kenny, Jose ;
Torre, Luigi ;
Angel Lopez-Manchado, Miguel .
CARBOHYDRATE POLYMERS, 2013, 96 (02) :611-620
[8]   Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol [J].
Bondeson, Daniel ;
Oksman, Kristiina .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2007, 38 (12) :2486-2492
[9]   Linear and nonlinear viscoelastic behavior of very concentrated plate-like kaolin suspensions [J].
Bossard, Frederic ;
Moan, Michel ;
Aubry, Thierry .
JOURNAL OF RHEOLOGY, 2007, 51 (06) :1253-1270
[10]   Nonlinear rheology of colloidal dispersions [J].
Brader, J. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (36)