Inverse optimization in semi-infinite linear programs

被引:8
|
作者
Ghate, Archis [1 ]
机构
[1] Univ Washington, Dept Ind & Syst Engn, BOX 352650, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Infinite-dimensional optimization; Duality theory; Simplex algorithm; INFINITE; APPROXIMATION; DUALITY;
D O I
10.1016/j.orl.2020.02.007
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given the costs and a feasible solution for a finite-dimensional linear program (LP), inverse optimization involves finding new costs that are close to the original ones and render the given solution optimal. Ahuja and Orlin employed the absolute weighted sum metric to quantify distances between costs, and then applied duality to establish that inverse optimization reduces to another finite-dimensional LP. This paper extends this to semi-infinite linear programs (SILPs). A convergent Simplex algorithm to tackle the inverse SILP is proposed. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 50 条
  • [1] CALMNESS MODULUS OF LINEAR SEMI-INFINITE PROGRAMS
    Canovas, M. J.
    Kruger, A. Y.
    Lopez, M. A.
    Parra, J.
    Thera, M. A.
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) : 29 - 48
  • [2] A Generic Result in Linear Semi-Infinite Optimization
    Miguel A. Goberna
    Marco A. López
    Maxim I. Todorov
    Applied Mathematics and Optimization, 2003, 48 : 181 - 193
  • [3] A generic result in linear semi-infinite optimization
    Goberna, MA
    López, MA
    Todorov, MI
    APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 48 (03): : 181 - 193
  • [4] On stable uniqueness in linear semi-infinite optimization
    M. A. Goberna
    M. I. Todorov
    V. N. Vera de Serio
    Journal of Global Optimization, 2012, 53 : 347 - 361
  • [5] On stable uniqueness in linear semi-infinite optimization
    Goberna, M. A.
    Todorov, M. I.
    Vera de Serio, V. N.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 53 (02) : 347 - 361
  • [6] Recent contributions to linear semi-infinite optimization
    Goberna, M. A.
    Lopez, M. A.
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2017, 15 (03): : 221 - 264
  • [7] Recent contributions to linear semi-infinite optimization
    M. A. Goberna
    M. A. López
    4OR, 2017, 15 : 221 - 264
  • [8] Inverse optimization in countably infinite linear programs
    Ghate, Archis
    OPERATIONS RESEARCH LETTERS, 2015, 43 (03) : 231 - 235
  • [9] Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization
    M. J. Cánovas
    A. Hantoute
    J. Parra
    F. J. Toledo
    Journal of Optimization Theory and Applications, 2014, 160 : 111 - 126
  • [10] GENERIC PROPERTIES IN THE LINEAR VECTOR SEMI-INFINITE OPTIMIZATION
    TODOROV, MI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (04): : 27 - 29