SECOND-ORDER CONVEX SPLITTING SCHEMES FOR GRADIENT FLOWS WITH EHRLICH-SCHWOEBEL TYPE ENERGY: APPLICATION TO THIN FILM EPITAXY

被引:358
作者
Shen, Jie [2 ]
Wang, Cheng [3 ]
Wang, Xiaoming [1 ]
Wise, Steven M. [4 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Univ Massachusetts, Dept Math, N Dartmouth, MA 02747 USA
[4] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
unconditional stability; second order scheme; convex-concave decomposition; epitaxial growth; Ehrlich-Schwoebel type energy; FINITE-ELEMENT APPROXIMATION; SLOPE SELECTION; GROWTH; DYNAMICS; MODEL; CAHN;
D O I
10.1137/110822839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct unconditionally stable, unconditionally uniquely solvable, and second-order accurate (in time) schemes for gradient flows with energy of the form integral Omega(F(del phi(x))+epsilon(2)/2 vertical bar Delta phi(x)vertical bar(2)) dx. The construction of the schemes involves the appropriate combination and extension of two classical ideas: (i) appropriate convex-concave decomposition of the energy functional and (ii) the secant method. As an application, we derive schemes for epitaxial growth models with slope selection (F(y) = 1/4 (vertical bar y vertical bar(2) - 1)(2)) or without slope selection (F(y) = -1/2 ln(1 + vertical bar y vertical bar(2))). Two types of unconditionally stable uniquely solvable second-order schemes are presented. The first type inherits the variational structure of the original continuous-in-time gradient flow, while the second type does not preserve the variational structure. We present numerical simulations for the case with slope selection which verify well-known physical scaling laws for the long time coarsening process.
引用
收藏
页码:105 / 125
页数:21
相关论文
共 33 条
[1]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[2]  
[Anonymous], 1999, CLASSICS APPL MATH
[3]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[4]   FINITE-ELEMENT APPROXIMATION OF THE PARABOLIC P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :413-428
[5]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[6]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[7]  
Chen W.B., J SCI COMPU IN PRESS
[8]   An efficient algorithm for solving the phase field crystal model [J].
Cheng, Mowei ;
Warren, James A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) :6241-6248
[9]   NUMERICAL-ANALYSIS OF A CONTINUUM MODEL OF PHASE-TRANSITION [J].
DU, Q ;
NICOLAIDES, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (05) :1310-1322
[10]   ATOMIC VIEW OF SURFACE SELF-DIFFUSION - TUNGSTEN ON TUNGSTEN [J].
EHRLICH, G ;
HUDDA, FG .
JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (03) :1039-&