Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things

被引:87
作者
Marques, Goncalo [1 ]
Ferreira, Cristina Roque [2 ]
Pitarma, Rui [1 ]
机构
[1] Polytech Inst Guarda, Unit Inland Dev, Ave Dr Francisco Sa Carneiro 50, P-6300559 Guarda, Portugal
[2] Hosp Ctr & Univ Coimbra CHUC, Dept Imagiol, P-3000075 Coimbra, Portugal
关键词
AAL (ambient assisted living); Enhanced living environments; Health informatics; IAQ (indoor air quality); IoT (internet of things); Smart cities; SMART CITIES; HEALTH; SCHOOLS; COST;
D O I
10.1007/s10916-019-1184-x
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Indoor air quality (IAQ) parameters are not only directly related to occupational health but also have a significant impact on quality of life as people typically spend more than 90% of their time in indoor environments. Although IAQ is not usually monitored, it must be perceived as a relevant issue to follow up for the inhabitants' well-being and comfort for enhanced living environments and occupational health. Carbon dioxide (CO2) has a substantial influence on public health and can be used as an essential index of IAQ. CO2 levels over 1000ppm, indicates an indoor air potential problem. Monitoring CO2 concentration in real-time is essential to detect IAQ issues to quickly intervene in the building. The continuous technological advances in several areas such as Ambient Assisted Living and the Internet of Things (IoT) make it possible to build smart objects with significant capabilities for sensing and connecting. This paper presents the iAirCO(2) system, a solution for CO2 real-time monitoring based on IoT architecture. The iAirCO(2) is composed of a hardware prototype for ambient data collection and a Web and smartphone software for data consulting. In future, it is planned that these data can be accessed by doctors in order to support medical diagnostics. Compared to other solutions, the iAirCO(2) is based on open-source technologies, providing a total Wi-Fi system, with several advantages such as its modularity, scalability, low-cost, and easy installation. The results reveal that the system can generate a viable IAQ appraisal, allowing to anticipate technical interventions that contribute to a healthier living environment.
引用
收藏
页数:10
相关论文
共 35 条
[1]   A Cost-Effective Wireless Sensor Network System for Indoor Air Quality Monitoring Applications [J].
Abraham, Sherin ;
Li, Xinrong .
9TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC'14) / THE 11TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC'14) / AFFILIATED WORKSHOPS, 2014, 34 :165-171
[2]  
Awbi H.B., 2003, Ventilation of Buildings, V2nd
[3]   Smart cities of the future [J].
Batty, M. ;
Axhausen, K. W. ;
Giannotti, F. ;
Pozdnoukhov, A. ;
Bazzani, A. ;
Wachowicz, M. ;
Ouzounis, G. ;
Portugali, Y. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 214 (01) :481-518
[4]  
Bhattacharya S, 2012, I CONF SENS TECHNOL, P422, DOI 10.1109/ICSensT.2012.6461713
[5]  
Bruce N, 2000, B WORLD HEALTH ORGAN, V78, P1078
[6]   Smart Cities in Europe [J].
Caragliu, Andrea ;
Del Bo, Chiara ;
Nijkamp, Peter .
JOURNAL OF URBAN TECHNOLOGY, 2011, 18 (02) :65-82
[7]  
CHOURABI H, 2012, FRAMEWORK, P2289
[8]  
*ESPR SYST, 2015, ESP8266EX DATASHEET
[9]  
Hernández-Muñoz JM, 2011, LECT NOTES COMPUT SC, V6656, P447, DOI 10.1007/978-3-642-20898-0_32
[10]   Indoor air quality and health [J].
Jones, AP .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (28) :4535-4564