SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries

被引:129
作者
Zhou, Pengfei [1 ]
Zhang, Zhen [1 ]
Meng, Huanju [1 ]
Lu, Yanying [1 ]
Cao, Jun [1 ]
Cheng, Fangyi [1 ]
Tao, Zhanliang [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Minist Educ, Coll Chem, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
关键词
LITHIUM SECONDARY BATTERY; ELECTROCHEMICAL PERFORMANCE; LINI0.8CO0.15AL0.05O2; CATHODES; STORAGE CHARACTERISTICS; CYCLING PERFORMANCE; LI(NI0.8CO0.15AL0.05)O-2; LI(NI1/3CO1/3MN1/3)O-2; ELECTROLYTE; IMPROVEMENT; LINI0.9CO0.1O2;
D O I
10.1039/c6nr07438c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We reported a one-step dry coating of amorphous SiO2 on spherical Ni-rich layered LiNi0.915Co0.075Al0.01O2 (NCA) cathode materials. Combined characterization of XRD, EDS mapping, and TEM indicates that a SiO2 layer with an average thickness of similar to 50 nm was uniformly coated on the surface of NCA microspheres, without inducing any change of the phase structure and morphology. Electrochemical tests show that the 0.2 wt% SiO2-coated NCA material exhibits enhanced cyclability and rate properties, combining with better thermal stability compared with those of pristine NCA. For example, 0.2 wt% SiO2-coated NCA delivers a high specific capacity of 181.3 mA h g(-1) with a capacity retention of 90.7% after 50 cycles at 1 C rate and 25 degrees C. Moreover, the capacity retention of this composite at 60 degrees C is 12.5% higher than that of pristine NCA at 1 C rate after 50 cycles. The effects of SiO2 coating on the electrochemical performance of NCA are investigated by EIS, CV, and DSC tests, the improved performance is attributed to the surface coating layer of amorphous SiO2, which effectively suppresses side reactions between NCA and electrolytes, decreases the SEI layer resistance, and retards the growth of charge-transfer resistance, thus enhancing structural and cycling stability of NCA.
引用
收藏
页码:19263 / 19269
页数:7
相关论文
共 43 条
[1]   Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries [J].
Arumugam, D. ;
Kalaignan, G. Paruthimal .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 624 (1-2) :197-204
[2]   Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials [J].
Bak, Seong-Min ;
Nam, Kyung-Wan ;
Chang, Wonyoung ;
Yu, Xiqian ;
Hu, Enyuan ;
Hwang, Sooyeon ;
Stach, Eric A. ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing .
CHEMISTRY OF MATERIALS, 2013, 25 (03) :337-351
[3]   Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3CO1/3Mn1/3)O2 [J].
Belharouak, I ;
Lu, WQ ;
Vissers, D ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :329-335
[4]   Thermal behavior of delithiated Li(Ni0.8Co0.15Al0.05)O2 and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 powders [J].
Belharouak, Ilias ;
Lu, Wenquan ;
Liu, Jun ;
Vissers, Donald ;
Amine, Khalil .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :905-909
[5]   Combination of Lightweight Elements and Nanostructured Materials for Batteries [J].
Chen, Jun ;
Cheng, Fangyi .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (06) :713-723
[6]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[7]   Significant Improvement of LiNi0.8Co0.15Al0.05O2 Cathodes at 60°C by SiO2 Dry Coating for Li-Ion Batteries [J].
Cho, Yonghyun ;
Cho, Jaephil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) :A625-A629
[8]   LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 Precursors [J].
Cho, Younghyun ;
Lee, Yong-Seok ;
Park, Seul-A ;
Lee, Youngil ;
Cho, Jaephil .
ELECTROCHIMICA ACTA, 2010, 56 (01) :333-339
[9]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[10]   Storage characteristics of LiNi0.8Co0.1+xMn0.1-xO2 (x=0, 0.03, and 0.06) cathode materials for lithium batteries [J].
Eom, Junho ;
Kim, Min Gyu ;
Cho, Jaephil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (03) :A239-A245