Quadratic integer programming with application to the chaotic mappings of complete multipartite graphs

被引:10
作者
Fu, HL [1 ]
Shiue, CL
Cheng, X
Du, DZ
Kim, JM
机构
[1] Natl Chiao Thung Univ, Dept Appl Math, Hsinchu, Taiwan
[2] Natl Tsing Hua Univ, Natl Ctr Theoret Sci, Div Math, Hsinchu, Taiwan
[3] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN USA
[4] Chinese Acad Sci, Inst Appl Math, Beijing, Peoples R China
关键词
chaotic mapping; complete multipartite graph; quadratic integer programming; optimal solution;
D O I
10.1023/A:1017584227417
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let a be a permutation of the vertex set V(G) of a connected graph G. Define the total relative displacement of alpha in G by [GRAPHIC] where d(G) (x, y) is the length of the shortest path between x and y in G. Let pi*(G) be the maximum value of delta (alpha)(G) among all permutations of V(G). The permutation which realizes pi*(G) is called a chaotic mapping of G. In this paper, we study the chaotic mappings of complete multipartite graphs. The problem is reduced to a quadratic integer programming problem. We characterize its optimal solution and present an algorithm running in O(n(5) log n) time, where n is the total number of vertices in a complete multipartite graph.
引用
收藏
页码:545 / 556
页数:12
相关论文
共 6 条