X-ray phase contrast and fluorescence nanotomography for material studies

被引:13
作者
Suhonen, Heikki [1 ]
Xu, Feng [2 ]
Helfen, Lukas [2 ]
Ferrero, Claudio [1 ]
Vladimirov, Pavel [2 ]
Cloetens, Peter [1 ]
机构
[1] ESRF, F-38043 Grenoble 9, France
[2] Karlsruhe Inst Technol, Karlsruhe, Germany
关键词
Nano-imaging; Tomography; Laminography; Beryllium pebble; RADIATION COMPUTED LAMINOGRAPHY; SYNCHROTRON-RADIATION; TOMOGRAPHY;
D O I
10.3139/146.110664
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The macroscopic properties of many materials are determined by structural features spanning a wide range of length scales. The nano-imaging endstation ID22NI of the European Synchrotron Radiation Facility is optimized for nanoscale imaging (X-ray focus size well below 100 nm) at high X-ray energy (17-29 keV), making it possible to study the interior of dense samples with a millimetric size. Computed tomography and computed laminography setups allow three dimensional imaging of a wide variety of samples, laminography being especially suited for non-destructive imaging of flat samples. The focused X-rays are used as a scanning probe for fluorescence tomography, providing sensitivity for elemental composition down to the ppm level. Projection microscopy with phase contrast is used for imaging the electron density in an extremely sensitive way. We demonstrate these capabilities by imaging a Be pebble. We found large scale cracks and nanoporosity (<1 mu m pores). Furthermore, beryllium oxide inclusions could be detected, ranging from 200 nm to several microns in size. Some of the smallest inclusions were located next to a small pore, indicating beryllium oxide formation after solidification of the structure.
引用
收藏
页码:179 / 183
页数:5
相关论文
共 30 条
  • [1] Barrett R., 2011, P SOC PHOTO-OPT INS
  • [2] Hard x-rays nanoscale fluorescence imaging of earth and planetary science samples
    Bleuet, Pierre
    Simionovici, Alexandre
    Lemelle, Laurence
    Ferroir, Tristan
    Cloetens, Peter
    Tucoulou, Remi
    Susini, Jean
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (21)
  • [3] A hard x-ray nanoprobe for scanning and projection nanotomography
    Bleuet, Pierre
    Cloetens, Peter
    Gergaud, Patrice
    Mariolle, Denis
    Chevalier, Nicolas
    Tucoulou, Remi
    Susini, Jean
    Chabli, Amal
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (05)
  • [4] Borbély A, 2011, ADV STRUCT MAT, V10, P151, DOI 10.1007/978-3-642-17782-8_7
  • [5] Manganese Accumulates within Golgi Apparatus in Dopaminergic Cells as Revealed by Synchrotron X-ray Fluorescence Nanoimaging
    Carmona, Asuncion
    Deves, Guillaume
    Roudeau, Stephane
    Cloetens, Peter
    Bohic, Sylvain
    Ortega, Richard
    [J]. ACS CHEMICAL NEUROSCIENCE, 2010, 1 (03): : 194 - 203
  • [6] A GPU-Based Architecture for Real-Time Data Assessment at Synchrotron Experiments
    Chilingaryan, Suren
    Mirone, Alessandro
    Hammersley, Andrew
    Ferrero, Claudio
    Helfen, Lukas
    Kopmann, Andreas
    Rolo, Tomy dos Santos
    Vagovic, Patrik
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (04) : 1447 - 1455
  • [7] Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays
    Cloetens, P
    Ludwig, W
    Baruchel, J
    Van Dyck, D
    Van Landuyt, J
    Guigay, JP
    Schlenker, M
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (19) : 2912 - 2914
  • [8] Void growth in copper during high-temperature power-law creep
    Dzieciol, K.
    Borbely, A.
    Sket, F.
    Isaac, A.
    Di Michiel, M.
    Cloetens, P.
    Buslaps, Th
    Pyzalla, A. R.
    [J]. ACTA MATERIALIA, 2011, 59 (02) : 671 - 677
  • [9] Sub-micron resolution CT for failure analysis and process development
    Feser, M.
    Gelb, J.
    Chang, H.
    Cui, H.
    Duewer, F.
    Lau, S. H.
    Tkachuk, A.
    Yun, W.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19 (09)
  • [10] Nanoscale materials
    Heath, JR
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (05) : 388 - 388