Spontaneous PT-symmetry breaking in non-Hermitian Kitaev and extended Kitaev models

被引:79
作者
Wang, Xiaohui [1 ,2 ]
Liu, Tingting [1 ,2 ]
Xiong, Ye [1 ,2 ]
Tong, Peiqing [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Normal Univ, Dept Phys, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Theoret Phys, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Jiangsu Key Lab Numer Simulat Large Scale Complex, Nanjing 210023, Jiangsu, Peoples R China
[4] Chinese Acad Sci, Kavli Inst Theoret Phys China, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
HAMILTONIANS;
D O I
10.1103/PhysRevA.92.012116
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The spontaneous parity-time (PT) symmetry breaking is discussed in non-Hermitian PT-symmetric Kitaev and extended Kitaev models whose Hermiticity is broken by the presence of two conjugated imaginary potentials +/- i gamma at two end sites. In the case of the non-Hermitian Kitaev model, a spontaneous PT-symmetry breaking transition (SPT BT) occurs at a certain gamma(c) in the topologically trivial phase (TTP) region, similar to that of the Su-Schrieffer-Heeger (SSH) model. However, unlike the SSH model, the system also undergoes such a transition in the topologically nontrivial phase (TNP) region. We study an extended Kitaev model by combining the superconducting pairing in the Kitaev model and the staggered hopping in the SSH model. This model contains three different topological phases: the TTP, the Kitaev-like TNP, and the SSH-like TNP. For the non-Hermitian extended Kitaev model, a SPT BT occurs in the Kitaev-like TNP region, as well as in part of the TTP and SSH-like TNP regions, whereas the PT symmetry is broken for an arbitrary nonzero gamma in the rest of the TTP and SSH-like TNP regions. Therefore, we can conclude that there is no universal correlation between topological properties and the SPT BT.
引用
收藏
页数:6
相关论文
共 49 条
  • [1] New directions in the pursuit of Majorana fermions in solid state systems
    Alicea, Jason
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (07)
  • [2] Majorana fermions in a tunable semiconductor device
    Alicea, Jason
    [J]. PHYSICAL REVIEW B, 2010, 81 (12):
  • [3] Search for Majorana Fermions in Superconductors
    Beenakker, C. W. J.
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 4, 2013, 4 : 113 - 136
  • [4] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [5] Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction -: art. no. 025001
    Bender, CM
    Brody, DC
    Jones, HF
    [J]. PHYSICAL REVIEW D, 2004, 70 (02): : 025001 - 1
  • [6] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [7] Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes
    Bendix, Oliver
    Fleischmann, Ragnar
    Kottos, Tsampikos
    Shapiro, Boris
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (03)
  • [8] PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard
    Bittner, S.
    Dietz, B.
    Guenther, U.
    Harney, H. L.
    Miski-Oglu, M.
    Richter, A.
    Schaefer, F.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (02)
  • [9] Quantum master equation with balanced gain and loss
    Dast, Dennis
    Haag, Daniel
    Cartarius, Holger
    Wunner, Geunter
    [J]. PHYSICAL REVIEW A, 2014, 90 (05):
  • [10] Theory of coupled optical PT-symmetric structures
    El-Ganainy, R.
    Makris, K. G.
    Christodoulides, D. N.
    Musslimani, Ziad H.
    [J]. OPTICS LETTERS, 2007, 32 (17) : 2632 - 2634