Sheaves and K-theory for F1-schemes

被引:27
作者
Chu, Chenghao [2 ]
Lorscheid, Oliver [1 ]
Santhanam, Rekha [3 ]
机构
[1] Univ Wuppertal, Dept Math, D-42097 Wuppertal, Germany
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[3] IIT Kanpur, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Monoids; F-1-geometry; Sheaf theory; K-theory; Sphere spectrum; VARIETIES; SCHEMES;
D O I
10.1016/j.aim.2011.12.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the open problem in F-1-geometry of developing K-theory for F-1-schemes. We provide all necessary facts from the theory of monoid actions on pointed sets and we introduce sheaves for M-0-schemes and F-1-schemes in the sense of Comics and Consani. A wide range of results hopefully lies the background for further developments of the algebraic geometry over F-1. Special attention is paid to two aspects particular to F-1-geometry, namely, normal morphisms and locally projective sheaves, which occur when we adopt Quillen's Q-construction to a definition of G-theory and K-theory for F-1-schemes. A comparison with Waldhausen's S-circle-construction yields the ring structure of K-theory. In particular, we generalize Deitmar's K-theory of monoids and show that K-*(Spec F-1) realizes the stable homotopy of the spheres as a ring spectrum. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2239 / 2286
页数:48
相关论文
共 36 条
[1]  
[Anonymous], COHOMOLOGY DET UNPUB
[2]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[3]  
Barratt M G, 1971, ALGEBRAIC TOPOLOGY, P31
[4]  
Borceux F., 1994, HDB CATEGORICAL ALGE, V2
[5]  
Carlsson Gunnar, 2008, ARXIV08032745MATHAT
[6]   Schemes over F1 and zeta functions [J].
Connes, Alain ;
Consani, Caterina .
COMPOSITIO MATHEMATICA, 2010, 146 (06) :1383-1415
[7]  
Deitmar A, 2005, PROG MATH, V239, P87
[8]  
Deitmar A., 2008, Beitrage Algebra Geom, V49, P517
[9]  
Deitmar A, 2006, P JPN ACAD A-MATH, V82, P141
[10]   Rings, modules, and algebras in infinite loop space theory [J].
Elmendorf, A. D. ;
Mandell, M. A. .
ADVANCES IN MATHEMATICS, 2006, 205 (01) :163-228